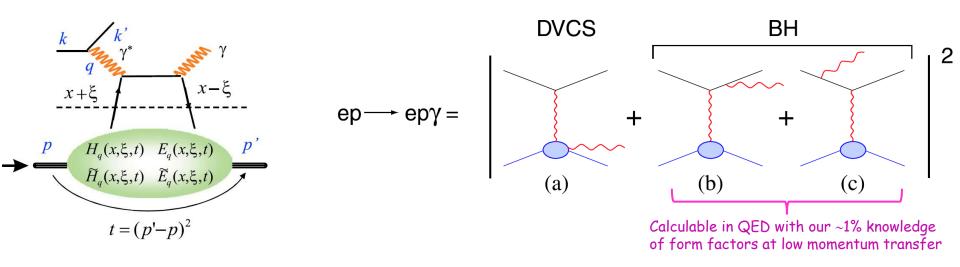
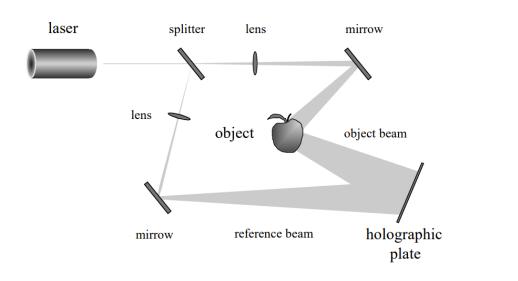
## Unpolarized positron beam experiment in Hall C

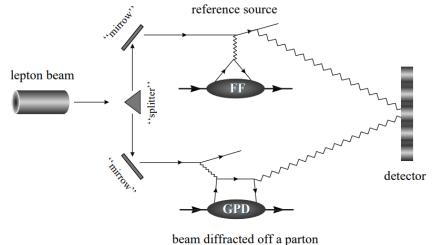
Proposal to PAC48
based on
Lol to PAC46

```
A. Camsonne,<sup>1</sup> M. Carmignotto,<sup>1</sup> R. Ent,<sup>1</sup> J. Grames*,<sup>1</sup> C. Keppel,<sup>1</sup> M. McCaughan,<sup>1</sup> B. Sawatzky,<sup>1</sup> A. Somov,<sup>1</sup> B. Wojtsekhowski,<sup>1</sup> S. Wood,<sup>1</sup> C. Zorn,<sup>1</sup> M. Caudron,<sup>2</sup> L. Causse,<sup>2</sup> P. Chatagnon,<sup>2</sup> R. Dupré,<sup>2</sup> M. Ehrhart,<sup>2</sup> M. Guidal,<sup>2</sup> S. Habet,<sup>2</sup> A. Hobart,<sup>2</sup> D. Marchand,<sup>2</sup> C. Muñoz Camacho*<sup>†</sup>,<sup>2</sup> S. Niccolai,<sup>2</sup> H.-S. Ko,<sup>2</sup> K. Price,<sup>2</sup> V. Sergeyeva,<sup>2</sup> E. Voutier,<sup>2</sup> S. Zhao,<sup>2</sup> M. Mazouz*,<sup>3</sup> S. Ali,<sup>4</sup> V. Berdnikov,<sup>4</sup> T. Horn,<sup>4</sup> G. Kalicy,<sup>4</sup> M. Muhoza,<sup>4</sup> I. Pegg,<sup>4</sup> R. Trotta,<sup>4</sup> A. Asaturyan,<sup>5</sup> A. Mkrtchyan,<sup>5</sup> H. Mkrtchyan,<sup>5</sup> V. Tadevosyan,<sup>5</sup> H. Voskanyan,<sup>5</sup> S. Zhamkochyan,<sup>5</sup> M. Amaryan,<sup>6</sup> C. Hyde,<sup>6</sup> M. Kerver,<sup>6</sup> H. Rashad,<sup>6</sup> J. Murphy,<sup>7</sup> J. Roche,<sup>7</sup> P. Markowitz,<sup>8</sup> A. Afanasev,<sup>9</sup> W. J. Briscoe,<sup>9</sup> I. Strakovsky,<sup>9</sup> M. Boer,<sup>10</sup> R. Paremuzyan,<sup>10</sup> T. Forest,<sup>11</sup> J. R.M. Annand,<sup>12</sup> D. J. Hamilton,<sup>12</sup> B. McKinnon,<sup>12</sup> D. Day,<sup>13</sup> D. Keller,<sup>13</sup> R. Rondon,<sup>13</sup> J. Zhang,<sup>13</sup> K. Brinkmann,<sup>14</sup> S. Diehl,<sup>14</sup> R. Novotny,<sup>14</sup> P. Gueye,<sup>15</sup> V. Bellini,<sup>16</sup> D. Dutta,<sup>17</sup> E. Kinney,<sup>18</sup> P. Nadel-Turonski,<sup>19</sup> G. Niculescu.<sup>20</sup> S. Sirca,<sup>21</sup> I. Albayrak,<sup>22</sup> M. A. I. Fernando,<sup>23</sup> and M. Defurne<sup>24</sup>
```

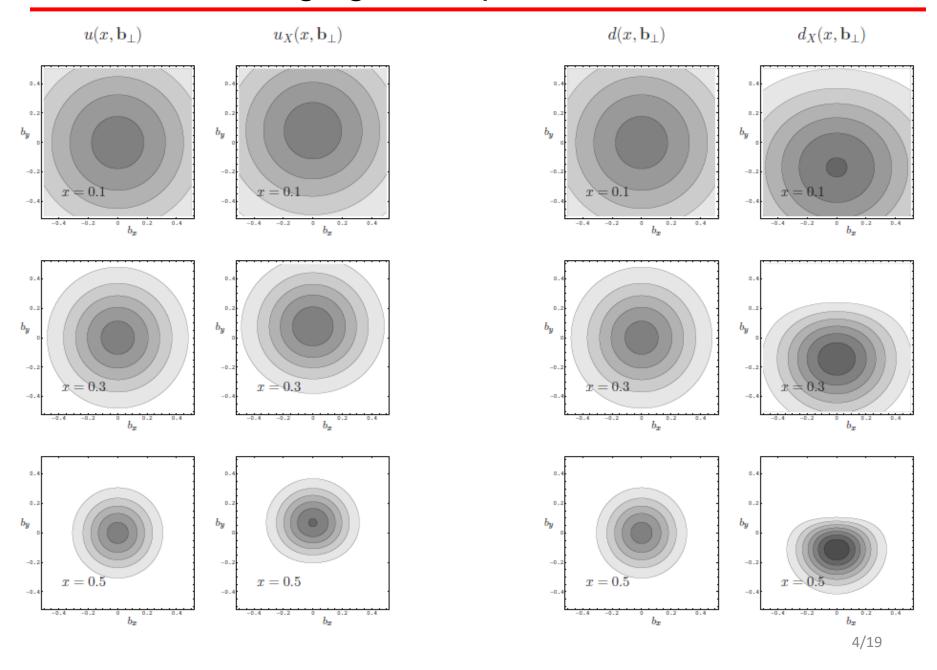
<sup>1</sup>Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606, USA <sup>2</sup>Laboratoire de Physique des 2 Infinis Irène Joliot-Curie Université Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France) <sup>3</sup>Faculté des Sciences de Monastir (Tunisia) <sup>4</sup>The Catholic University of America Washington, DC 20064, USA <sup>5</sup>A. Alikhanyan National Laboratory, Yerevan Physics Institute, Yerevan 375036, Armenia <sup>6</sup>Old Dominion University Norfolk, VA 23529, USA <sup>7</sup>Ohio University Athens, OH 45701, USA <sup>8</sup>Florida International University Miami, FL 33199, USA <sup>9</sup>The George Washington University Washington, DC 20052, USA <sup>10</sup>University of New Hampshire Durham, NH 03824, USA <sup>11</sup>Idaho State University Pocatello, ID 83209, USA <sup>12</sup>University of Glasgow Glasgow G12 8QQ, United Kingdom <sup>13</sup>University of Virginia Charlottesville, VA 22904, USA <sup>14</sup> Universität Gießen Luwigstraße 23, 35390 Gießen, Deutschland <sup>15</sup>Facility for Rare Isotope Beams, Michigan State University 640 South Shaw Lane, East Lansing, MI 48824


<sup>16</sup>Istituto Nazionale di Fisica Nucleare

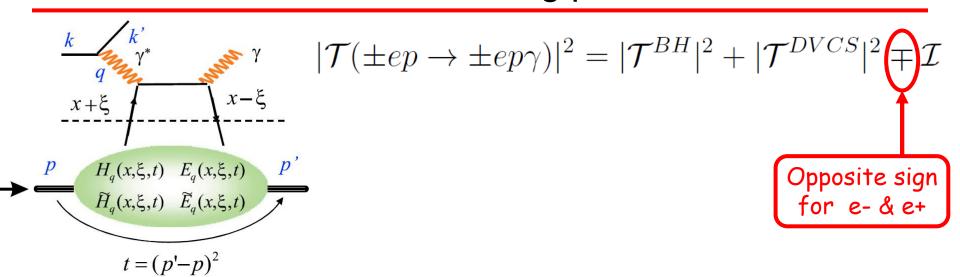

Sezione di Catania, 95123 Catania, Italy <sup>17</sup>Mississippi State University Mississippi State, MS 39762, USA <sup>18</sup>University of Colorado Boulder, CO 80309, USA <sup>19</sup>Stony Brook University Stony Brook, NY <sup>20</sup>James Madison University, Harrisonburg, VA 22807, USA <sup>21</sup> Univerza v Ljubljani 1000 Liubliana, Slovenia <sup>22</sup>Akdeniz Üniversitesi 07070 Konyaalti/Antalya, Turkey <sup>23</sup>Hampton University Hampton, VA 23668 <sup>24</sup>Commissariat à l'Energie Atomique 91191 Gif-sur-Yvette, France


Spokesperson

<sup>†</sup> Contact person


# Deeply Virtual Compton Scattering (DVCS)








# 3D imaging of the proton with DVCS



## Motivation for using positrons



### When only 1 quark of the proton is involved in the reaction:

$$\begin{array}{lll} d^5 \stackrel{\rightarrow}{\sigma} - d^5 \stackrel{\leftarrow}{\sigma} & = & \Im m \, (T^{BH} \cdot T^{DVCS}) \\ d^5 \stackrel{\rightarrow}{\sigma} + d^5 \stackrel{\leftarrow}{\sigma} & = & |BH|^2 + \Re e \, (T^{BH} \cdot T^{DVCS}) + |DVCS|^2 \end{array}$$

## DVCS program at JLab

## Two complementary approaches:

Survey measurements with large acceptance device (CLAS + CLAS12):

Study of many different observables over a wide range of kinematics, but limited statistical and systematic uncertainties

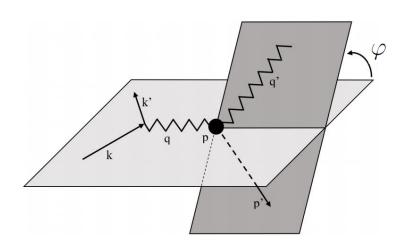
• Precision measurements in selected kinematic settings (Hall A + Hall C): test of scaling, higher twist corrections, L/T separations...

## A few milestones of the precision DVCS program

- First indications of leading twist dominance for DVCS for  $Q^2$  as low as  $\sim 2 \text{ GeV}^2$
- Large magnitude of the DVCS<sup>2</sup> contribution
   Phys. Rev. Lett. 97, 262002 (2006)
   Phys. Rev. C92, 055202 (2015)
- Necessity to include corrections  $O(t/Q^2)$  &  $O(M^2/Q^2)$  to the DVCS cross section
- Initial separation DVCS2 & BH-DVCS interference (yet ambiguous)

Nature Communications 8, 1408 (2017)

Nature Physics **16**, 191 (2020)

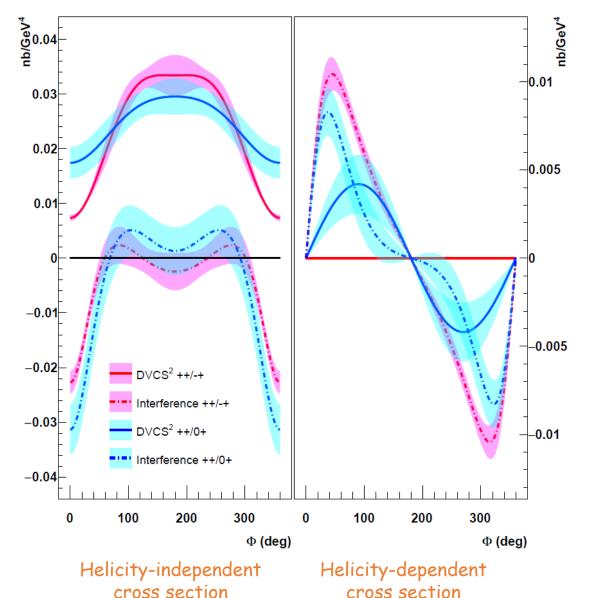

- Flavor separation of CFFs combining proton & neutron DVCS data
- DVCS on coherent deuteron ( $\rightarrow$  nuclear GPDs) Phys. Rev. Lett. **99**, 242501 (2007)
- L/T separation of  $\pi^0$  electroproduction cross section ( $\rightarrow$  transversity GPDs)
- Flavor separation of transversity GPDs using  $\pi^0$  electroproduction & a LD<sub>2</sub> target

```
Phys. Rev. C83 025201 (2011)
Phys. Rev. Lett. 117, 262001 (2016)
Phys. Rev. Lett. 118, 222002 (2017)
```

## E07-007: Rosenbluth-like separation of DVCS

$$\sigma(ep \to ep\gamma) = \underbrace{|BH|^2}_{\text{Known to}} + \underbrace{\mathcal{I}(BH \cdot DVCS)}_{\text{Linear combination of GPDs}} + \underbrace{|DVCS|^2}_{\text{Bilinear combination of GPDs}}$$

$$\mathcal{I} \propto 1/y^3 = (k/\nu)^3,$$
$$\left|\mathcal{T}^{DVCS}\right|^2 \propto 1/y^2 = (k/\nu)^2$$




 $\varphi$ -dependence provides 5 independent observables:

$$\sim 1$$
,  $\sim \cos \varphi$ ,  $\sim \sin \varphi$ ,  $\sim \cos(2\varphi)$ ,  $\sim \sin(2\varphi)$ 

## E07-007: Rosenbluth-like separation of DVCS

DVCS $^2$  and  $\mathcal{I}$  (DVCS·BH) separated in NLO and higher-twist scenarios



- DVCS $^2$  &  $\mathcal{I}$  significantly different in each scenario
- Sizeable DVCS<sup>2</sup>
   contribution in the
   higher-twist scenario in
   the helicity-dependent
   cross section

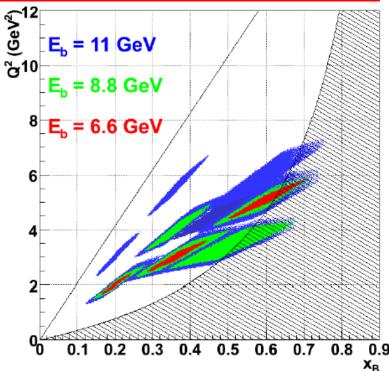
Nature Commun. 8, 1408 (2017)

## DVCS with positrons and NPS (proposal to PAC48)

$$|\mathcal{T}(\pm ep \to \pm ep\gamma)|^2 = |\mathcal{T}^{BH}|^2 + |\mathcal{T}^{DVCS}|^2 + |\mathcal{T}$$

Opposite sign for e- & e+

#### Physics goals and motivation:

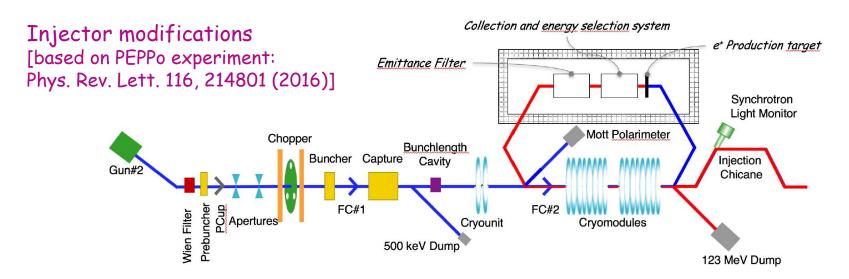

- ✓ Precise determination of the absolute photon electro-production cross section
- ✓ Clean, model-independent separation of DVCS² and DVCS-BH interference
- ✓ More stringer constraints on theory by combining e<sup>-</sup> & e<sup>+</sup> data

#### In a nutshell:

- Same experimental configuration as approved experiment E12-13-010
- > Expected positron beam momentum spread comparable with current electron beam
- Positron beam size larger than current electron beam (twice bigger at 11 GeV according to current simulation)
- No additional systematic uncertainties expected due to the use of positrons

## PR12-20-012: Kinematic settings

Same kinematics settings as approved E12—13-010 with electrons




77 days, 5  $\mu$ A of (unpolarized) positrons assumed Positron data: 25% of statistics of electron data

| $x_{ m Bj}$                                       | 0.2   |     |      | 0.36 |      |      |      |      | 0.5  |           |      | 0.6  |      |      |      |      |      |
|---------------------------------------------------|-------|-----|------|------|------|------|------|------|------|-----------|------|------|------|------|------|------|------|
| $Q^2  (\mathrm{GeV})^2$                           | 2.0   |     | 3.0  | 3.0  |      | 4.0  |      | 5.5  | 3.   | .4        | 4.8  |      | 5.1  |      | 6.0  |      |      |
| k  (GeV)                                          | 6.6   | 8.8 | 1    | 1    | 6.6  | 8.8  | 11   | 8.8  | 1    | 1         | 8.8  | 1    | 1    | 6.6  | 8.8  | 1    | 1    |
| k' (GeV)                                          | 1.3   | 3.5 | 5.7  | 3.0  | 2.2  | 4.4  | 6.6  | 2.9  | 5.1  | 2.9       | 5.2  | 7.4  | 5.9  | 2.1  | 4.3  | 6.5  | 5.7  |
| $\theta_{\mathrm{Calo}}\left(\mathrm{deg}\right)$ | 6.3   | 9.2 | 10.6 | 6.3  | 11.7 | 14.7 | 16.2 | 10.3 | 12.4 | 7.9       | 20.2 | 21.7 | 16.6 | 13.8 | 17.8 | 19.8 | 17.2 |
| $D_{\text{Calo}}$ (m)                             | 6 4 6 |     |      | 6    | 3    |      |      | 4    | 3    | 4         | 3    |      |      |      |      |      |      |
| $\sigma_{M_X^2}({ m GeV^2})$                      | 0.17  |     | 0.22 | 0.3  | 13   | 0.12 | 0.   | 15   | 0.19 | 0.09 0.11 |      | 0.09 |      |      |      |      |      |
| $I_{\mathrm{beam}} (\mu \mathbf{A})$              | 5     |     |      |      |      |      |      |      |      |           |      |      |      |      |      |      |      |
| Days                                              | 1     | 1   | 3    | 1    | 2    | 3    | 2    | 3    | 4    | 13        | 4    | 3    | 7    | 7    | 2    | 7    | 14   |

10/19

## Positron production and transport



#### Electrons

| Area    | δр/р                 | $\epsilon_{x}$ | ε <sub>y</sub> |   |
|---------|----------------------|----------------|----------------|---|
|         | [x10 <sup>-3</sup> ] | [nm]           | [nm]           |   |
| Chicane | 0.5                  | 4.00           | 4.00           |   |
| Arc 1   | 0.05                 | 0.41           | 0.41           |   |
| Arc 2   | 0.03                 | 0.26           | 0.23           |   |
| Arc 3   | 0.035                | 0.22           | 0.21           |   |
| Arc 4   | 0.044                | 0.21           | 0.24           |   |
| Arc 5   | 0.060                | 0.33           | 0.25           |   |
| Arc 6   | 0.090                | 0.58           | 0.31           |   |
| Arc 7   | 0.104                | 0.79           | 0.44           |   |
| Arc 8   | 0.133                | 1.21           | 0.57           |   |
| Arc 9   | 0.167                | 2.09           | 0.64           |   |
| Arc 10  | 0.194                | 2.97           | 0.95           |   |
| Hall D  | 0.18                 | 2.70           | 1.03           | 1 |

#### Positrons

| Area    | δp/p                 | $\epsilon_{x}$ | $\epsilon_{y}$ |  |
|---------|----------------------|----------------|----------------|--|
|         | [x10 <sup>-3</sup> ] | [nm]           | [nm]           |  |
| Chicane | 10                   | 500            | 500            |  |
| Arc 1   | 1                    | 50             | 50             |  |
| Arc 2   | 0.53                 | 26.8           | 26.6           |  |
| Arc 3   | 0.36                 | 19             | 18.6           |  |
| Arc 4   | 0.27                 | 14.5           | 13.8           |  |
| Arc 5   | 0.22                 | 12             | 11.2           |  |
| Arc 6   | 0.19                 | 10             | 9.5            |  |
| Arc 7   | 0.17                 | 8.9            | 8.35           |  |
| Arc 8   | 0.16                 | 8.36           | 7.38           |  |
| Arc 9   | 0.16                 | 8.4            | 6.8            |  |
| MYAAT01 | 0.18                 | 9.13           | 6.19           |  |

At 11 GeV, after Arc9, e+ beam size ~twice bigger than e- beam

Averaging  $\varepsilon x$  and  $\varepsilon_y$ :

 $\sqrt{7.6/1.4} \sim 2.3$ 

11/19

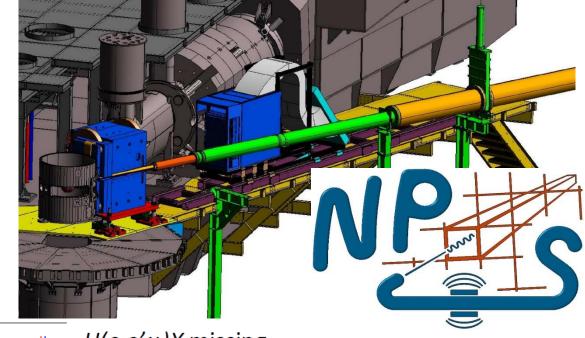
Dominated by synchrotron rad. in Arcs

Dominated by

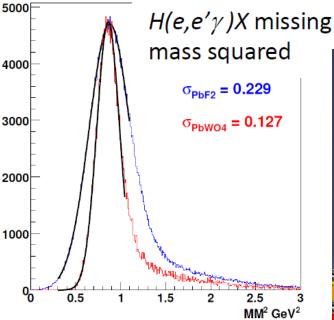
damping in the

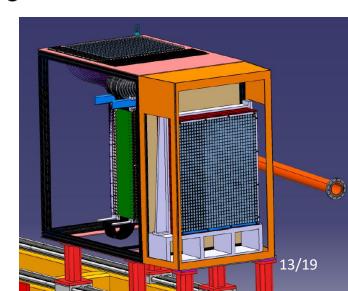
LINACS

## TAC comments on positron


- The implementation of a multi-Hall, high current, high polarization positron beam at CEBAF raises multiple and complex challenges, as detailed in the TAC report
- If the PAC finds our physics program compelling, our collaboration is ready to engage with the Lab to investigate its feasibility.

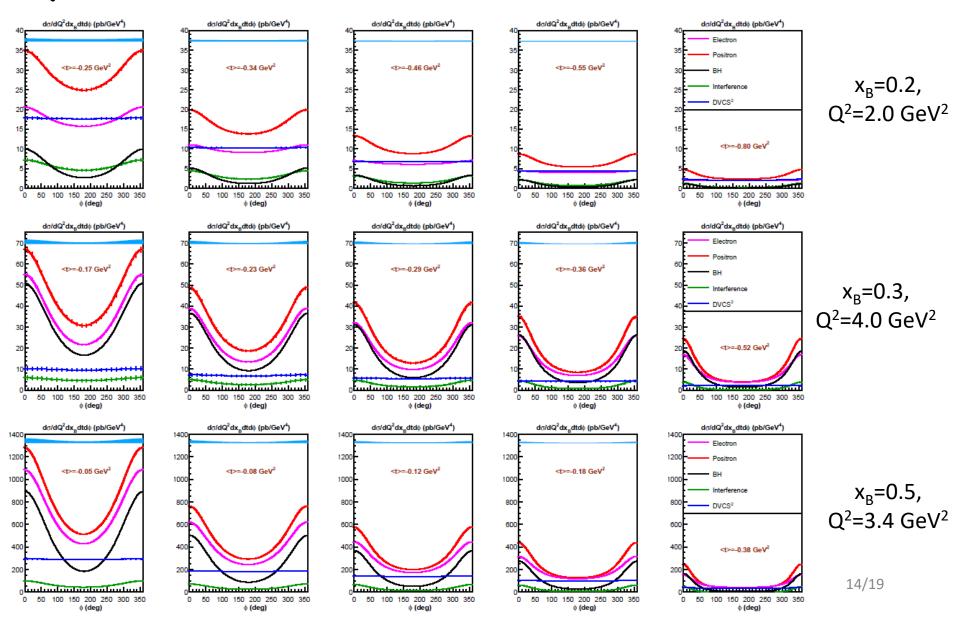
#### TAC conclusion:


In conclusion, while a positron beam upgrade is a major upgrade which will require substantial accelerator physics development, a detailed cost and implementation plan, and expensive changes to the CEBAF accelerator, a multi-Hall positron beam capability could have great potential for a future JLAB 12-GeV science program.


## Neutral Particle Spectrometer (NPS)

- 1080 PbWO<sub>4</sub> crystals
- 0.6 Tm sweeping magnet
- F250ADC sampling electronics
- · Large opening angle beam pipe
- SHMS as carriage for rotation



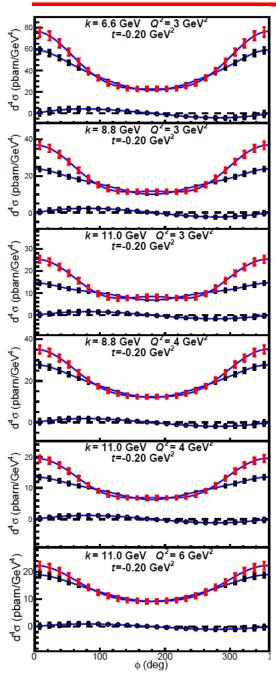







# Separation of DVCS<sup>2</sup> and BH-DVCS interference

Projections based on the KM15 model (Kumericki and Mueller, 2015)




## Systematic uncertainties

| Source                | pt-to-pt<br>(%) | scale<br>(%) |  |
|-----------------------|-----------------|--------------|--|
| Acceptance            | 0.4             | 1.0          |  |
| Electron PID          | <0.1            | <0.1         |  |
| Efficiency            | 0.5             | 1.0          |  |
| Electron tracking     | 0.1             | 0.5          |  |
| Charge                | 0.5             | 1.0          |  |
| Target thickness      | 0.2             | 0.5          |  |
| Kinematics            | 0.4             | <0.1         |  |
| Exclusivity           | 1.0             | 2.0          |  |
| $\pi^0$ subtraction   | 0.5             | 1.0          |  |
| Radiative corrections | 1.2             | 2.0          |  |
| Total                 | 1.8-1.9         | 3.4-3.5      |  |

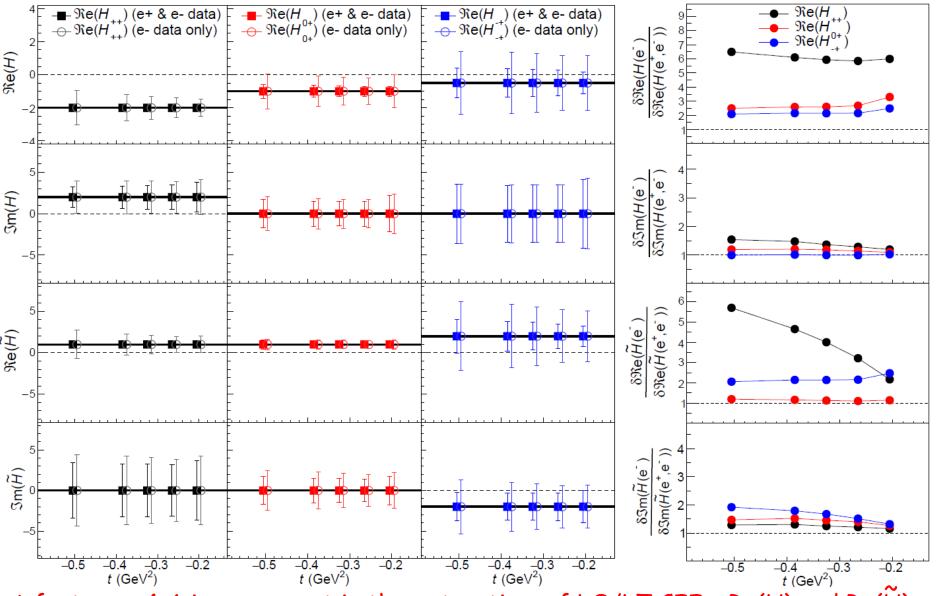
The  $\pi^0$  electroproduction cross section would be measured concurrently with DVCS with both electrons and positrons, and would allow to monitor the systematics of the e- and e+ runs

## Impact on Compton Form Factors (CFFs) extraction



✓ Combined fit of all electron data from approved experiment E12-13-010

(helicity-dependent AND helicity-independent cross sections)


✓ Fits with and without the proposed positron data

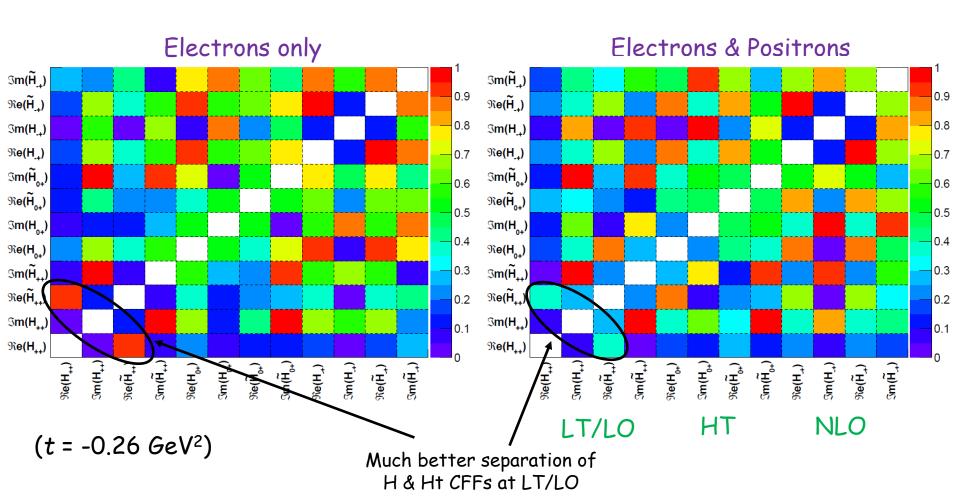
In order to extract the CFFs we exploit the combined

- Azimuthal dependence (φ)
- Beam-energy dependence
- Q<sup>2</sup>-dependence
- Helicity dependence (for E12-13-010 data)
- Beam-charge dependence

of the DVCS cross section

# Impact on Compton Form Factors (CFFs) extraction




A factor or 4-6 improvement in the extraction of LO/LT CFFs Re(H) and Re(H)

17/19

## Correlation coefficients

Correlations between different CFFs are significantly improved by a combined fit with positrons

$$|\rho_{i,j}| = |\operatorname{cov}[\mathbb{F}_i, \mathbb{F}_j]/(\sigma_i \sigma_j)|$$



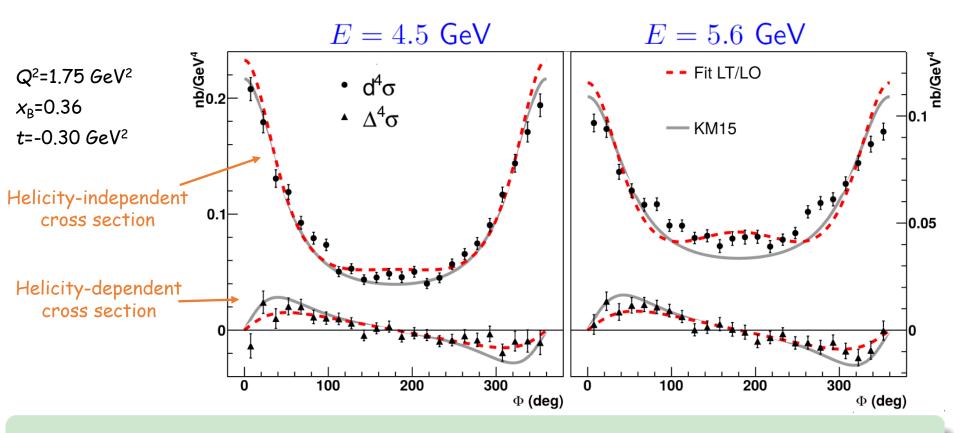
18/19

(from -94% without positrons to -39% when electron and positrons are combined, in this t-bin)

# Summary and conclusion

Positrons are the unique way to unambiguously separate the DVCS<sup>2</sup> and the BH-DVCS interference

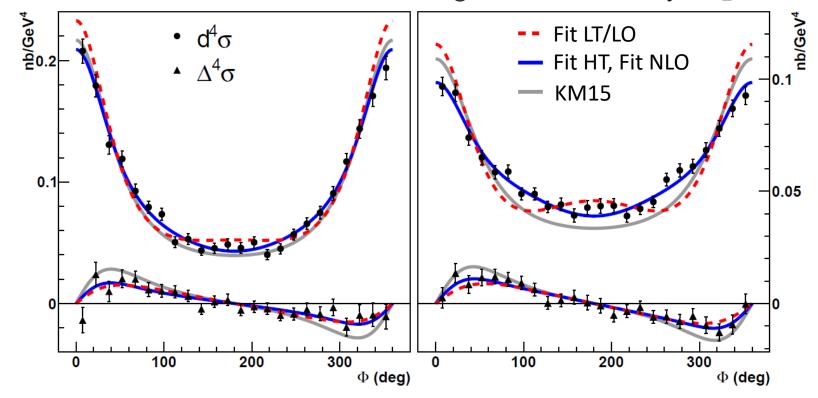
> They will have a strong impact on fits of DVCS data, and the 3D-imaging program of the nucleon


 $\succ$  77 days of (unpolarized) positrons at I  $\geq$  5 mA were requested to the PAC

> Same setup (HMS+NPS) and kinematics of approved experiment E12-13-010

# Back-up

## E07-007: Rosenbluth-like separation of DVCS


• Cross section measured at 2 beam energies and constant  $Q^2$ ,  $x_B$ , t



 Leading-twist and LO simultaneous fit of both beam energies (dashed line) does not reproduce the data

## E07-007: Rosenbluth-like separation of DVCS

• Cross section measured at 2 beam energies and constant  $Q^2$ ,  $x_B$ , t



- Using only helicity-conserving CFFs ("LT/LO") the fit of both beam energies (dashed line) does not reproduce the data
- Including helicity-flip CFFs, either single-helicity flip ("HT") or double-helicity flip ("NLO") satisfactorily reproduce the angular dependence (blue solid line)