H₂O Bubble Chamber Superheated Active Target System

Safety and Systems Overview

B. DiGiovine

Physics Division and Bubble Chambers

- April 2009
 - First Bubble Chamber Received Full Operation Authorization (C_4F_{10})
- February 2010
 - First Bubble Chamber Received Upgrade Authorization for Superheated H_2O
- Two Campaigns at $HI\gamma S$
- Months of Testing and Calibrations at ANL
- Operation at ANL Open House Detecting Cosmic Rays
- Months of Operation by FERMI Collaborators for Calibration of COUPP Bubble Chambers
- Zero Incidents/Accidents

Physics Division and Bubble Chambers

	- N
Argonr	ie 🕶

October 21, 2009

R.V.F. J Dir, PHY ESH/QA Engineer, PH'r

ches to the body of the vacuum cham

w approving, and recommend that you authorize, the full operation that the he is allowed to averate the Bubble Chamber at room

T.P. Mullen Mellalle

Safety and Systems

Basic Operation and Phase Diagrams

- Theory of Operation
- Basic Components of the Detector

• Overview of Systems and Components

- Bubble Chamber
- Pressure Vessel
- Viewport, Camera, and Lighting
- Hydraulic
- Heating
- Control and Instrumentation Chassis
- Data Acquisition and Systems Integration
- Safety
 - Hydraulic Control System
 - Bubble Chamber Pressure Vessel
 - Control Chassis and Remote Overrides
 - Heating
 - Chemical

Theory of Operation

 $1 \rightarrow 2$

Active liquid is pressurized

 $2 \rightarrow 3$

Active liquid is heated

$3 \rightarrow 4$

Pressure is reduced creating a superheated liquid

4

Nuclear reactions induce bubble nucleation

 $4 \rightarrow 3$

High speed camera detects bubble and repressurizes

 $3 \rightarrow 4 \rightarrow 3$

System is now prepared for another cycle.

Basic Components

- Heavy Wall Stainless Steel Pressure Vessel
- Thin Wall Glass Active
 Liquid Volume
- Thin Pressure Transfer
 Bellows
- Heaters
- Pressure Supply
- Solenoid Valves
- High Speed Camera

Systems and Components

- Bubble Chamber
- Pressure Vessel
- Viewport, Camera and Lighting
- Hydraulic Control
- Heating
- Control and Instrumentation
- Data Acquisition and Systems Integration

Bubble Chamber

- Thin Glass Vessel Holds Active Liquid, H₂O
- H₂O Floats on Diffusion Pump Oil
- Oil Fills Remaining Inner Volume
- Superheated Liquid Only in Contact With Smooth Surfaces
- Thin Sensitive Edge Welded Bellows Equalize Pressure
- Stainless Tube Facilitates External Connection of Pressure Transducers and Filling Valves

Pressure Vessel

- Houses Bubble
 Chamber
- One Piece Construction
 - No Welding
 - Minimal Internal Volume
- Machined From a Solid 304 S.S. Forging
- Flanges Machined From 316 S.S.
 - Utilize a Plug Design to Reduce Inner Volume

Viewport, Camera, and Lighting

- Custom Designed and Fabricated by Industry Leader in High P&T Viewports
- Design Paramaters:
 - 260°C
 - 88 ATM
- High Speed 100FPS Camera
- High Intensity Fiber Optic Lighting

Hydraulic Control System

- Constructed of Commercially Available Off-the-Shelf Components
 - Pressure Rated for Hydraulic Service
- Provides Regulated Hydraulic Pressure
- Solenoid Valve Output Control
- Output Flow Control and Relief
- Vented Reservoir System

Heating

- Thermocoax: Commercial
 Off-the-Shelf Heating
 Elements
- Mineral Insulated
 Stainless/Inconel Sheath
 Coaxial Heating Elements
- Electrical Connections Made Externally
 - 3.5kW Total Heating

Control and Instrumentation Chassis

- Temperature Monitoring and Heater Control
- Pressure and Temperature Transducer Retransmission to Computer
- Solenoid Valve Manual Operation and Computer Interface
- Hydraulic System Logic and Interlocks
- Two Remote Override Control Interfaces
- Electrical Safety Inspection Completed on All Chasses

Data Acquisition / System Integration

SAFETY

- Hydraulic Control System
- Bubble Chamber
 Pressure Vessel
- Control Chassis and Remote Overrides
- Heating
- Chemical

Hydraulic Control System

Bubble Chamber Pressure Vessel

- FEA Used for Verification of Production Design, Pressure of 88 ATM
- Material Properties @ 250°C Used for Simulations and Analysis
- S.F. Based on Material **Yield Strength**, *Not* Ultimate Tensile Strength
 - Pressure Vessel Safety Factor: 4.8
 - Pressure Flange Safety Factor: 5.4
- @ 88 ATM, Force on Flange = 34klbf
 - Each Bolt Must Carry 2.8klbf
 - 5/8-18 Grade 5 Bolt Rated to 36klbf
 - Bolts Safety Wired to Prevent Loosening
- Max Operating Conditions to be Limited to 68 ATM, 250°C

Control Chassis & Remote Overrides

- Control Chassis
 Designed with Safety
 Interlocks
 - Heating
 - Solenoid Valves
- Two Remote Override Interfaces Allow for Complete Control of System
 - Solenoid Valves
 - Hydraulic Pump
 - Heaters

Heating Safety

- Commercial Heating Controllers Integrated into System
- Retransmission of Temperature Values to Computer
 - Logging Values
 - Heater Interlock
- Thermal Switch Network Installed on Pressure Vessel
- Heater Override on Remote
 Interface
- Redundant and Independent Remote Heat Kill System
- Thermal Insulation Housing
 - Reduce Heat Loss
 - Protect Personnel

Chemical Safety

- Paratherm NF
 - Commercial Heat Transfer Fluid
 - Max Operating Temp 332°C
 - Food Grade, Mineral Oil Based
- Fomblin 14/6
 - Diffusion Pump Oil
 - Chemically Inert
 - Wide Temperature Operating Range (-100°C to 290°C)
- Distilled Water
- No Serious Hazards
 - Standard PPE: gloves, safety glasses
- Disposal:
 - NF: Waste Oil Recycler
 - Fomblin: Landfill, Not Hazardous

Appendix

- 1. Complete Hydraulic Schematic
- 2. High Voltage Control Chassis Schematic
- 3. Logic and Instrumentation Chassis Schematic
- 4. Relay Logic PCB Schematic
- 5. Front Panel Interface PCB Schematic
- 6. Compressed Liquid Energy Stored Calculations
- 7. Flange Loading and Bolt Strength Calculations
- 8. Canty Quote With Design Parameters
- 9. Beam Entry Port FEA

Hydrulic Schematic

High Voltage Chassis Schematic

Logic & Instrumentation Chassis Schematic

Relay Logic PCB Schematic

Front Panel Interface PCB Schematic

Energy Storage Calculations

Energy Stored in compressed liquid B~1000 MPa Volume = 460 in 3 $U_{lig} = \frac{1}{2} \left(\frac{P_{sys}^2 V_{sys}}{B} \right) = \frac{1}{2} \left(\frac{9 M P_a}{1000 M P_a} \left(\frac{0.00 7538 m^3}{0.00 7538 m^3} \right) \right) = \frac{1}{m^2} (m^3)$ Ulig = 3065 All stored potential energy given to Sindle flange (All bolts break simplexed) Seal friction neglected Mass of flame = 16 kg 3065= Uligon = K = 2MUZ $\sqrt{\frac{2(3065)}{16 kg}} = \sqrt{-(6.18 m/s)} = (14 mph)$

Flange Loading & Bolt Strength Calculations

0 08 6014 .625"
[NEW DATE AND
(1055 section Area) $M(.3125)^2 = 0.3067 \text{ in}^2$
Each bolt must colory: (33,761 16F) = (31416f) 12 30/25 = (31416f)
Bd+ d_{c+a} ss $(70,000 \text{ psi})(0.3067 \text{ m}^2) = 21,469 \text{ [bf}$ we s $(120,000 \text{ psi})(0.3067 \text{ m}^2) = 36,804 \text{ (bf}$ be $8(150,000 \text{ psi})(0.3067 \text{ m}^2) = 46,005 \text{ [bf}$

Quotation

Quote Date: 9/14/2010 Quote ID: 08471 Sales Representative: R100

Canty Quote and Design Parameters

Quote To: ARGONNE NATIONAL LABORATORY Ship To: 9700 S. CASS AVE. ARGONNE, IL 60439 USA

Contact:

Customer Reference		Lead Time		Desired Ship Date	Quote Expiration Date	
Terms		Tax Status	FOB Point	Ship Via	Preferred Carrier	Freight
NET 30		Exempt, Tax ID: 161077555	LOCKPORT	GROUND	UPS	Billed
Line	Quantity	Part - Description		UM	Unit Price	Extension
1	1.0000	CUSTOMQUOTE Custom Ca	amera System, as per	EACH	14,980.0000	\$14,980.00

below notes

Ethernet Carnera light combination	Line Item Sub Total:	\$14,980.00
Nema 4	Service Charge Total:	\$0.00
A602F Camera	Total Before Tax:	\$14,980.00

Nema 4 A602F Camera 56 degree lens Power Supply in non WP or EXP enclosure 316L/Hastelloy wetted Mounting Connection - Custom Flange NPD-20-002 HYL 80 1SRDO integral light

Vessel operates up to 260C at pressure up to 1300 psig.

Delivery would be approximately 10 - 12 weeks from receipt of signed approval drawing.

sds

QUOTES ARE VALID FOR 30 DAYS FROM DATE OF ISSUE.

Beam Port FEA

