GTS Emittance Measurement with Single Slit and Viewscreen

Joshua Yoskowitz

July 10, 2017

Single Slit and View Screen Setup

- Drift Length (L) = 500 mm
- Constant step size $w \approx 0.76$ mm
- Measurement steps m = 1, ..., N: N = 21

Using Mathematica for Calculations

- Mathematica code allows for quick analysis of data with little to no prior calculations
- Data should be a $(n+1) \times 4$ matrix: The first row contains the column descriptions: Beamlet position on V2 (in pixels), Sigma Y (in pixels), Beamlet Intensity (unitless), Beam position on V1 (in pixels). The subsequent rows contain data for the n measurements.
- Parameters necessary (these need to be input directly into the script itself):
 - mm/pixel conversion factors for each viewer
 - Laser size (mm)
 - Drift Length (mm)
 - ▶ Value of $\beta\gamma$ (1.23)
- Everything else is calculated using Mathematica as follows...

Calculation of Slit Positions x_{si} using Gaussian Fit

Figure: Plot of Beam Intensity of the jth beamlet (orange) with Gaussian fit (blue)

- The position of the mean of the Gaussian fit (i.e. centroid) is rounded to the nearest integer value. Mathematica finds the data point with its j-value closest to this value, then sets it to be the center beamlet position x_c
- The beamlet position data on V2, x_i is then centered about x_c using $x_{i,centered} = x_i x_c$
- The slit image positions on V2, X_i , are given by $X_i = x_{i,centered} + j \times stepsize$

Joshua Yoskowitz

- The slit positions on V1 (if V1 were a multislit mask), x_{si} , are given by $x_{si} = j \times stepsize$
- The stepsize is calculated by averaging the intervals between successive beam positions on V1

Single Slit Emittance Measurement

July 10, 2017

Calculations

$$\bar{x} = \frac{1}{N} \sum_{j=1}^{p} n_{j} x_{sj}, \ \bar{X}_{j} = \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{ji}$$

$$\bar{x}_{j}' = \frac{\bar{X}_{j} - x_{sj}}{L}, \ \bar{x}' = \frac{1}{N} \sum_{j=1}^{p} n_{j} \bar{x}_{j}'$$

$$\sigma_{x_{j}'} = \frac{\sigma_{j}}{L}$$

$$\langle x^{2} \rangle = \frac{1}{N} \sum_{j=1}^{p} n_{j} (x_{sj} - \bar{x})^{2}$$

$$\langle x'^{2} \rangle = \frac{1}{N} \sum_{j=1}^{p} \left[n_{j} \sigma_{x_{j}'}^{2} + n_{j} (\bar{x}_{j}' - \bar{x}')^{2} \right]$$

$$\langle xx' \rangle = \frac{1}{N} \left(\sum_{j=1}^{p} n_{j} x_{sj} \bar{x}_{j}' - N \bar{x} \bar{x}' \right)$$

$$\varepsilon_{x}^{2} \equiv \langle x^{2} \rangle \langle x'^{2} \rangle - \langle xx' \rangle^{2}$$

$$=$$

 $x_{si} = j$ -th slit's position $\bar{x} = \text{Mean position of all beamlets (just)}$ after V1) $X_i = \text{Mean position of the j-th spot on}$ the screen (V2) x'_i = Mean divergence of j-th beamlet $\bar{x'}$ = Mean divergence of all beamlets $\sigma_{\mathbf{x}_{\text{-}}'} = \mathsf{RMS}$ divergence of all beamlets j = Slit numberp = Total number of slits(measurements) $n_i = \text{Intensity of j-th beamlet (number)}$ of particles passing through the j-th slit) N =Sum of all beamlet intensities n_i $\varepsilon_{x} = \mathsf{RMS}$ emittance

Results

First Sum	4.19E+03
Second Sum	1.68E+04
Third Sum	-8.40E+03
Emittance (mm-mrad)	(6.11E - 01) i
Normalized Emitance (mm-mrad)	(7.51E - 01) i
Thermal Angle (mrad)	7.09 <i>i</i>

Table: Calculation of Emittance and Thermal Angle