Beam Optimization

Samuel Rhodes

William and Mary REU
Summer 2013

Goals

- Edit PEPPo Elegant file to build Mott beam line
- Define beam line from dipole magnet to the beam dump
- Elegant K value simulation (quad focusing)
- Use optimize command to get specific values for σ_{x} and σ_{y} at Mott scattering target (beam size)

Peppo to Mott

- Use Elegant dipole to bend magnet - 12.5 degrees instead of the 25 degrees used for PEPPo

```
MBV2D01: CSBEND, L=0.12663237, ANGLE="25 180.0/-1 acos*",,TILT=0, &
    E1="00.0 180.0 / -1 acos * ", E2="25 180.0 / -1 acos * ",, &
    EDGE_ORDER=2, HGAP=0.013564, FINT=0.5, NONLINEAR=1, N_KICKS=15, INTEGRATION_ORDER=4
```

MBV2D01: CSBEND, L=0.12663237, ANGLE="12.5 180.0/-1 acos * ", TILT=3.14159265359,

Beam Line

- Beam line from cryounit to dipole was already there.
- The beam from the dipole to the dump needed to be added.
- Measurements taken directly in tunnel.

Finding arc length of beam in dipole

- Worked backwards from PEPPo file. $\alpha=$ bend angle, $\rho=$ bend radius. Length units=meters

$$
\begin{aligned}
& L_{a r c}=.12970672=\rho \alpha=\frac{5 \pi}{36} \rho \\
& \rho=.29726591 \\
& l_{\text {eff }}=\rho \sin (\alpha)=.12563000 \\
& \rho=\frac{\sin (12.5)}{.12563000}=\frac{\sin (.2182)}{.12563000}=.580350 \\
& L_{\text {arc }}=\rho \alpha=.580350(.2182)=.12663237
\end{aligned}
$$

K1 - Quad Modeling in Elegant

- K values are scaled by the strength of the magnetic field. You can find the maximum K value by looking at the strongest possible field the magnet can produce. For "QJ" quadrupole magnets that value is found in the second equation line below.

$$
\begin{aligned}
& K=.2998 \frac{G e V}{T * m} * \frac{B_{o}}{a} \frac{T}{m} * \frac{1}{\beta E}=.2998 \frac{G e V}{T * m} * \frac{B_{o}}{a} \frac{T}{m} * \frac{1}{p c} \\
& \frac{B_{o}}{a} L=.6 \frac{k G}{c m} \mathrm{~cm} \\
& \frac{B_{o}}{a}=.04 \frac{\mathrm{kG}}{\mathrm{~cm}}=4000 \frac{G}{m} \\
& K=.02998 \frac{\mathrm{MeV}}{\mathrm{G}^{* m}} * 4000 \frac{G}{m} * \frac{1}{p} \frac{1}{\mathrm{MeV}}=\frac{119.92}{p} \frac{1}{m^{2}}
\end{aligned}
$$

"K1" Simulation Results

- Goal was to get a beam of approximately 1 mm in both the x and y . Just experimenting with different K1 values, I was able to get pretty close. However, these are the sigma values at the dump and not the target.

MQJOLO2 K1	MQJOLO2A K1	Sigma_x (m)	Sigma_y (m)
2.907078	1.812964	$1.035043 \mathrm{e}-3$	$1.111371 \mathrm{e}-3$
2.921342	1.916924	$1.046936 \mathrm{e}-3$	$1.138642 \mathrm{e}-3$
2.657921	1.996578	$1.025268 \mathrm{e}-3$	$1.104405 \mathrm{e}-3$
1.997078	1.996578	$9.614413 \mathrm{e}-4$	$9.703368 \mathrm{e}-4$
1.197078	1.196578	$8.956815 \mathrm{e}-4$	$6.378307 \mathrm{e}-4$

Elegant Optimization

```
&optimization_variable
name= MQJOLO2, item= K1, lower_limit=-100, upper_limit=100, step_size=1
&end
&optimization_variable
name= MQJOLO2A, item= K1, lower_limit=-100, upper_limit=100, step_size=1
&end
&optimization_term
weight=1,
term="ITG2D00#1.Sx .001 - sqr",
&end
&optimization_term
weight=1,
term="ITG2D00#1.Sy .001 - sqr",
&end
```


Optimized Sigma Values

P (MeV/c)	Max K1	MQJOLO2 K1	MQJOLO2A K1	Sigma_x	Sigma_y
8.3	14.448	$-13.44256 \ldots$	$4.820806 \ldots$	1.5 mm	1.5 mm
6.3	19.0349	$4.5010734 \ldots$	$-10.72985 \ldots$	1.25 mm	1.25 mm
5.5	21.8036	$-10.69554 \ldots$	$4.996516 \ldots$	1.5 mm	1.5 mm
4.2	28.552	$-9.999483 \ldots$	$4.863679 \ldots$	2 mm	2 mm
3.2	37.475	$-9.890956 \ldots$	$4.963274 \ldots$	2 mm	2 mm

8.3 MeV Graph

6.3 MeV Graph

5.5 MeV Graph

4.2 MeV Graph

sigma matrix--input: edited2 lattice: fool.Ite

3.2 MeV Graph

sigma matrix--input: edited2 lattice: fool.Ite

