DAQ of UITF 200 keV Mott Polarimeter

Vacuum Chamber

Measuring Mott Asymmetry

- How to measure the Mott Asymmetry *A*?
 - For one helicity state, measure the left and right detector counting rate, N_L^{\uparrow} and N_R^{\uparrow}
 - Flip the electron polarization, measure the counting rate again, N_L^{\downarrow} and N_R^{\downarrow}
 - Calculate the cross-ratio (r),

$$r=\sqrt{rac{N_L^{\uparrow}N_R^{\downarrow}}{N_L^{\downarrow}N_R^{\uparrow}}}$$

- Then, the Mott Asymmetry (A),

$$A = \frac{1-r}{1+r}$$

• This cancels false asymmetries from detector efficiency, beam current, target thickness, and solid angle

Measuring Instr. Asymmetry

- How to measure the Instrumental Asymmetry A_1 ?
 - For one helicity state, measure the left and right detector counting rate, N_L^{\uparrow} and N_R^{\uparrow}
 - Flip the electron polarization, measure the counting rate again, N_L^{\downarrow} and N_R^{\downarrow}
 - Calculate the cross-ratio (x1),

$$x_1 = \sqrt{\frac{N_L^{\uparrow} N_L^{\downarrow}}{N_R^{\downarrow} N_R^{\uparrow}}}$$

- Then, the Instrumental Asymmetry (A1),

$$A_1 = \frac{1 - x_1}{1 + x_1}$$

 This measures asymmetries from detector efficiency and solid angle but cancels beam current and target thickness

Measuring Instr. Asymmetry

- How to measure the Instrumental Asymmetry A_2 ?
 - For one helicity state, measure the left and right detector counting rate, N_L^{\uparrow} and N_R^{\uparrow}
 - Flip the electron polarization, measure the counting rate again, N_L^{\downarrow} and N_R^{\downarrow}
 - Calculate the cross-ratio (x2),

$$x_2 = \sqrt{\frac{N_L^{\uparrow} N_R^{\uparrow}}{N_L^{\downarrow} N_R^{\downarrow}}}$$

- Then, the Instrumental Asymmetry (A2),

$$A_2 = \frac{1 - x_2}{1 + x_2}$$

This measures asymmetries from beam current and target thickness but cancels detector efficiency and solid angle

Sherman Function and Differential Cross Section, Au

Sherman Function and Differential Cross Section, Ag

200 keV	S(130°)	DCS (b/sr)
Au	-0.446	659
Ag	-0.206	128

- Have these modules:
 - (1) ORTEC 710 Quad High Voltage Bias Supply (1 1000 V)
 - (2) ORTEC 142A Preamplifier for detector input capacitance 0 to 100 pF (conversion gain 45 mV/MeV)
 - (2) ORTEC 142B Preamplifier for detector input capacitance 100 to 400 pF (conversion gain 20 mV/MeV)
 - (2) ORTEC Model 590A Amplifier and Timing Single-Channel Analyzer (SCA)
 - (2) ORTEC Model 570 Amplifier

ORTEC Detectors

- (2) ORTEC ULTRA Detectors (BU-013-050-1000-S):
 - Ion-Implanted Silicon Charged Particles Detectors
 - Ultra-thin entrance window (500 Å) for optimum energy resolution (FWHM, $\alpha = 13$ keV, $\beta = 7$ keV)
 - B Mount
 - Detector size of 50 mm²
 - Depletion Depth (Range) of 1000 um for energies \leq 500 keV
 - Bias Voltage: +115 V
- (2) ORTEC ULTRA Detectors (BU-012-050-100):
 - Ion-Implanted Silicon Charged Particles Detectors
 - Ultra-thin entrance window (500 Å) for optimum energy resolution (FWHM, $\alpha = 12 \text{ keV}$, $\beta = 6 \text{ keV}$)
 - B Mount
 - Detector size of 50 mm²
 - Depletion Depth (Range) of 100 um for energies < 200 keV
 - Bias Voltage: +50 V

Single-Channel Analyzer (SCA)

- SCA Out:
 - Standard NIM of +5 V, 500 ns wide if the amplified signal passes the threshold of the Lower Level discriminator
 - Connect to Scaler
- Amp Out:
 - Energy output (Amplified: x5 to x1250)
 - Connect to fADC

Summer 2008 Test at CEBAF Injector 100 / 500 keV

Tek
Trig'd
M Pos: 800.0ns
CH1

Coupling
Image: Chi and the state of the state

Left Detector

Right Detector

Note: the timing output is 50 ns wide signals with 5 ns rise time (picture pending)

Left Preamp T Output

Right Preamp T Output

The old 100 keV DAQ

100 keV, CEBAF Tunnel

500 keV, CEBAF Tunnel

Asymmetry Data (100 keV, 300n A)

- ✓ Detectors HV +115 V
- ✓ Coarse Gain = 500, Fine Gain = 1.5
- ✓ Lower Level threshold = 1.25 V
- ✓ Window Width = 0.1 V for spectra data, = 0.5 for asymmetry data
- ✓ HWien = 90 degrees, MFB0D01A = -964 G-cm, MFB0D01B = 1013 G-cm

Asymmetry Data (500 keV, 300n A)

- ✓ Detectors HV +115 V
- ✓ Coarse Gain = 100, Fine Gain = 1.5
- ✓ Lower Level threshold = 1.4 V
- ✓ Window Width = 0.1 V for spectra data, = 0.3 for asymmetry data
- ✓ HWien = 90 degrees, MFB0D01A = -2369 G-cm, MFB0D01B = 2369 G-cm

P = 67.7 % (Super

Target Thickness Extrapolation

• Single-Atom Sherman Function must be corrected for plural scattering (a few large angle scattering) in the target:

$$S_{eff}(130^{\circ}, d) = \frac{S_{SA}(130^{\circ})}{1 + \alpha(130^{\circ}) \cdot d}$$

- alpha = 0.0005/A for 100 keV electrons and 0.0001/A for 500 keV electrons
- If possible, run with the thinnest target

Target Thickness Scan at 100 keV

Design of UITF 200 keV Mott Polarimeter

DAQ Schematic Diagram

Helicity Signals

New DAQ for Mott Polarimeter

- Measure Mott asymmetry (event counting)
- Measure Charge asymmetry (per helicity)
- Measure position differences (per helicity)
- DAQ Triggers:
 - Mott Detector
 - Helicity
- DAQ Hardware:
 - VXS crate (Ordered)
 - XVR-16 from Abaco Single Board Computer (SBC) (Ordered)
 - Jefferson Lab Flash Analog-to-Digital Convertor (fADC250) (quantity = 2) (On-site)
 - Trigger Interface (TI) (On-site)
 - Front Panel Signal Distribution module (On-site)
 - Desktop (Ready to Order)

Installation Timeline

- DAQ design and procurement: October December
- CODA and Firmware: January
- Data decoding and analysis: January February
- DAQ tests: January February
- Ready for beam: March 1, 2021

DAQ Readouts

- Mott Trigger:
 - Counting fADC
 - Integration fADC
- Helicity Trigger:
 - Integration fADC

Signals to DAQ

- Signals to Counting fADC:
 - (2) Amp Out
 - (2) Timing output from preamplifier
 - (4) Helicity Signals
- Signals to Integration fADC (helicity-gated):
 - (2) SCA Out
 - (4) Helicity Signals
 - (1) FC
 - (8) 2 BPMs (X[±], Y[±])

Target and Rates

- Wien Vertical at 90°
- Gold Targets (Z=79): 100, 300, 500 Å
- Silver Targets (Z=47): 300, 500, 2000 Å
- Solid angle of 0.11 msr (hole with diameter of 0.02" at 1.6875")
- Backward scattering angle of 130 degrees:

	200 keV
Au Target (A)	100
Current (nA)	50
Rate per detector(Hz)	1200
Time (s)	300

• Viewer and a thru hole

Electron Energy	Al Range (g/cm ²)	Al Range (mm)
100 keV	0.0075	0.03
500 keV	0.095	0.35

• *Electron Shielding*: The front collimator is 1 mm thick Al. Do not change the Al Collimator.

• *x-ray Shielding*: Add 1/8 inch lead jacket around the Al Collimator.

Talk Title Here

Cables, ...

- (4) Bias cable, SHV connector, 0 1000 V, male connectors
- (2) E 142A preamp 93-ohm cable, RG62A/U BNC, male connectors
- (2) T 142A preamp 50-ohm cable, RG58A/U BNC, male connectors
- (2) Test 142A preamp 50-ohm cable, RG58A/U BNC, male connectors
- (2) 142A preamp power cable, 9-pin D connectors (amphenol 17-10090), female in cave, male in service rack

- (2) E 142B preamp 93-ohm cable, RG62A/U BNC, male connectors
- (2) T 142B preamp 50-ohm cable, RG58A/U BNC, male connectors
- (2) Test 142B preamp 50-ohm cable, RG58A/U BNC, male connectors
- (2) 142B preamp power cable, 9-pin D connectors (amphenol 17-10090), female cave, male in service rack

Wednesday, December 8, 2021

