

M. Bruker, R. Bachimanchi, J. Grames, M. McCaughan, J. Musson, P. Owen, T. Plawski, M. Poelker, T. Powers, H. Wang, Y. Wang

Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

Center for Injectors and Sources

- Test setup for gun studies and component tests, but also beam experiments
- 180 kV gun, soon 200 kV (for CEBAF injector upgrade)
- SRF booster for CEBAF injector upgrade
- Final beam energy: $\leq 8 \text{ MeV}$
- Maximum average current: 100 nA (MeV beam, limited by radiation shielding)
- All cavities run at 1497 MHz

• Buncher creates temporal beam waist at 2-cell cavity • $\beta \approx 0.9$ at exit of 2-cell, then accelerate to any energy • Diagnostic dipole + BPM measures p_0 and $\delta p/p_0$

Design parameters	2-cell	7-cell
Final kinetic beam energy (MeV)	0.533	5
Peak on-axis E field (MV m ⁻¹)		
nominal	4.6	13.2
maximum	8.0	26.0
Beam current (mA)		
nominal	0.38	
maximum	1.0	
Q_0 min.	4×10 ⁹	8×10 ⁹

Cavity field calibration and phase space simulations

• Calibrate unit of field setpoint G_{set} vs. physical peak field A at phase of maximum energy gain ϕ_{max} - Measure $E_{kin}(G_{set})$ at $\phi_{max}(G_{set})$ with dipole - Simulate $E_{kin}(A)$ at $\phi_{max}(A)$ with GPT - Fit $E_{kin} = \alpha G_{set}$ * $\alpha_{2-cell} = 2.017(15) \text{ MV m}^{-1}$

- * $\alpha_{7-\text{cell}} = 1.915(4) \,\text{MV}\,\text{m}^{-1}$
- Allowing for a global phase offset, good agreement
- Pareto optimization of bunch length σ_t and energy spread $\sigma_E/\left< E \right>$
- Ignore initial energy spread and transverse phase space for now
- Slight overbunching at 2-cell is preferred
- Operate 2-cell on rising RF slope to post-bunch

Microphonics and field stability

0 50 100 150 200 250 300 f (Hz)

- Significant microphonic detuning, mostly environmental (machinery etc.)
- Field modulation is imprinted on beam
- Frequent sharp detuning spikes visible in spectrogram; source to be investigated
- Disturbances impact operational stability and effective beam quality

Long-term study reveals non-dispersive orbit drift
Relative beam momentum varies by several 10⁻⁴ in addition

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

ET_EX TikZposter