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1 Calculating Rates and the Acceptance Function

The calculation of rates from simulation is of primary importance. The rate is the simplest quantity
with which to compare simulations to data. The rate calculation from a given simulation is a
prediction of the number of events that will hit our detector per unit current per unit time, using
the assumptions in our simulation. All rates quoted in this note will have units of Hz/µA. The
differential rate in our detector from one point in phase space ~v is:

dR(~v) = L(~v)σ(~v)ε(~v)dv, (1)

where L(~v) is the luminosity, σ(~v) is the cross-section of the physics of interest and ε(~v) is the
acceptance function of our detectors (essentially the chance that an event near ~v will be detcted).
The total rate our detector sees is simply the integral of Eq. (1):

R =

∫
V
dR(~v). (2)

While L(~v) and σ(~v) are often known quantities, ε(~v) is a value obtained solely by simulation.
Figure ?? shows a plot of the acceptance function with respect to the different variables of single
scattering. As is demonstrated in the figure, the acceptance function’s behavior is well characterized
solely by it’s dependence upon scattering angle, χ and azimuthal angle ψ. Thus:

ε(~v) = ε(χ, ψ). (3)

2 Single Scattering Calculation

For a single scattering event, our phase space vector becomes ~v = (x, y, z, E, χ, ψ) and the volume
element is dv = dxdydzdEdχdψ. The total rate in a detector is then:

R =

∫
V
L(~v)σ(~v)ε(~v) sinχdv. (4)
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Figure 1: Simulated Acceptance Functions for each of the six degrees of freedom in single scattering. Results
are from the Left detector for 10 million events thrown. Only ε(χ) and ε(ψ) show large dependence.

The integrals over x, y are trivial. Additionally, the dependence of σ(~v) upon z and E are small
enough to ignore in our case. This yields:

R =
NAρ

A
NBd

∫ ψmax

ψmin

∫ χmax

χmin

σ(χ, ψ)ε(χ, ψ) sinχdχdψ, (5)

Where NA is Avogadro’s number, ρ is the density of the target foil, A is the atomic weight of the
foil material, NB is the number of electrons per second in 1 µA, and d is the target thickness. From
this point there are two methods that I’ve attempted to approximate this integral numerically.

2.1 Method 1: Reimann Sum

We divide the 2D integral into Nχ × Nψ bins in χ and ψ of size ∆χ∆ψ. Then Eq. (5) can be
estimated using

R ≈ NAρ

A
NBd

Nχ∑
i=1

Nψ∑
j=1

σijεij sinχi∆χ∆ψ, (6)
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Where σij is the average cross-section for all events thrown in the ij’th bin and εij is the acceptance
function for the bin. The uncertainty, δR, from this method is given by

δR2 =

(
NAρ

A
NBd∆χ∆ψ

)2 Nχ∑
i=1

Nψ∑
j=1

(
ε2ijδσ

2
ij + σ2

ijδε
2
ij

)
sin2 χi. (7)

Figure 2 shows the binned cross-section and acceptance function for a run. This method gives good
results which are in decent agreement with data as seen in Table 1.
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Figure 2: On the left: Simulated average cross-section as a function of scattering angle, χ, and azimuthal
angle, ψ, for the left detector. On the right: Simulated acceptance function, ε(χ, ψ). Results from a
simulation of one million events and a 52 nm gold foil.

d (nm) Rsim Rfit Rdata

52 10.25 ± 0.67 9.75 ± 0.50 9.93 ± 0.09

215 42.49 ± 1.46 40.32 ± 2.05 46.50 ± 0.48

389 77.15 ± 2.08 72.95 ± 3.70 82.58 ± 1.04

487 95.75 ± 2.40 91.33 ± 4.62 97.74 ± 1.00

561 109.89 ± 2.62 105.21 ± 5.34 128.66 ± 1.32

775 153.20 ± 3.28 145.34 ± 7.38 178.30 ± 1.86

837 163.88 ± 3.45 156.97 ± 7.97 209.30 ± 2.15

944 186.50 ± 3.77 177.04 ± 8.99 246.00 ± 2.53

Table 1: Comparison of simulated rates to data. Rsim are the simulated rates for single scattering calculated
using the Reimann sum method on one million events at each target thickness. Rfit is the linear portion of
the quadratic fit to data, Rdata. Data and fit taken from: https://wiki.jlab.org/ciswiki/images/e/

ef/Rates.pdf . All rates are given in units of Hz/µA.
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2.2 Method 2: Monte Carlo Integration

In this method we try to numerically estimate the integral in Eq. (4) with a Monte Carlo method.
Examining Eq. (4) without simplifying, we see

R =
NAρ

A

NB

(2π)3/2σxσyσE

∫
V

exp

(
− x2

2σ2
x

− y2

2σ2
y

− (E − µE)2

2σ2
E

)
σ(E, z, χ, ψ)ε(χ, ψ) sinχdv. (8)

We define

g(~v) =
1

(2π)3/2σxσyσE
exp

(
− x2

2σ2
x

− y2

2σ2
y

− (E − µE)2

2σ2
E

)
σ(E, z, χ, ψ)ε(χ, ψ) sinχ. (9)

The GEANT4 code throws single scattering events by sampling the space V according to the proba-
bility distribution function,

f(~v) = C exp

(
− x2

2σ2
x

− y2

2σ2
y

− (E − µE)2

2σ2
E

)
sinχ, (10)

with normalization condition,

1

C
=

∫
V

exp

(
− x2

2σ2
x

− y2

2σ2
y

− (E − µE)2

2σ2
E

)
sinχdv (11)

= (2π)3/2σxσyσEd
π

9

[
cos

π

36
− cos

π

18

]
. (12)

Looking back at Eq. (8), we can write it in terms of f(~v) and g(~v) as

R =
NAρ

A
NB

∫
V

g(~v)

f(~v)
f(~v)dv. (13)

At this point we can estimate the integral using Monte Carlo integration

R ≈ NAρ

A
NB

n∑
i=1

g(~vi)

f(~vi)
(14)

=
π

9

[
cos

π

36
− cos

π

18

] NAρ

A
NBd

n∑
i=1

σ(Ei, zi, χi, ψi)ε(χi, ψi). (15)

where n is the number of events thrown. Using this method we see some issues as highlighted
in Table 4. In particular, the rates are similar at small foils and then diverge as d increases.
Additionally, the uncertainty provided by the Monte Carlo method is much too small, particularly
in light of Table 3, which shows the dependence upon n.

3 Double Scattering Rates

We look again at the differential form of the scattering rate. In this case we consider the rate by
pieces. The rate from the initial scattering at position (x, y, z) and energy (prior to entering the
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Method 1 Method 2

d (nm) RL RR RL RR
52 4.9925 ± 0.278161 15.328 ± 0.857051 4.70594 14.3801

215 20.6304 ± 1.15056 64.3406 ± 3.5734 18.5732 58.4646

389 37.5026 ± 2.08311 116.799 ± 6.47384 33.9492 105.638

487 46.318 ± 2.59238 145.19 ± 8.07558 41.5134 130.262

561 53.9568 ± 3.00251 165.831 ± 9.26319 48.2993 147.777

775 74.3995 ± 4.14572 232.009 ± 12.8863 66.7659 205.792

837 80.1061 ± 4.47106 247.645 ± 13.8336 71.5765 222.249

944 90.757 ± 5.04853 282.25 ± 15.6653 80.4706 253.798

Table 2: Simulated single scattering results for one million simulated events using both Methods. It is
apparent that the two methods diverge at higher target thickness.

Method 1 Method 2

# Events (M) RL RR RL RR
1 95.755 297.138 85.6182 267.592

1 95.3268 297.042 87.8213 276.02

3 95.9154 296.887 89.9372 279.687

4 95.6782 297.705 90.9824 283.096

5 95.6821 298.066 91.6055 286.014

6 95.655 298.174 92.0939 288.068

7 95.7495 298.209 92.6041 289.371

8 95.7276 298.514 92.8742 290.194

9 95.7947 298.681 93.103 290.973

10 95.9183 298.902 93.3508 291.551

Table 3: A comparison of results from each method for a target 1000 nm thick all results are in Hz/µA. It
should be noted that the uncertainty for Method 1 is constant as well (it’s dominated by the averaging over
target positions, energies etc.) with values of δRL = 5.34 Hz/µA and δRR = 16.58 Hz/µA. Thus the two
methods are consistent with around 5 million events.

target), E towards the second scattering position along direction (θ, φ) is given by:

dR1(~v) = L(~v)σ1(~v)dv (16)

=
NAρ

A

NB

(2π)3/2σxσyσE
exp

[
x2

2σ2
x

+
y2

2σ2
y

+
E2

2σ2
E

]
σ1(z, E, θ, φ) sin θdxdydzdEdθdφ (17)

The rate that our detector sees then from the second scattering is then:

dR(~v) =
NAρ

A
dR1(~v)σ2(z, E, ξ, θ, φ, χ, ψ)ε(χ, ψ) sinχdξdχdψ. (18)

We define

g(~v) = exp

[
x2

2σ2
x

+
y2

2σ2
y

+
E2

2σ2
E

]
σ1(~v)σ2(~v)ε(χ, ψ) sin θ sinχ (19)
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Method 1 Method 2

d (nm) RL RR RL RR
52 5.02 ± 0.28 15.44 ± 0.86 5.05 15.57

215 20.67 ± 1.15 63.96 ± 3.56 20.20 62.52

389 37.10 ± 2.07 115.52 ± 6.43 35.84 112.35

487 46.51 ± 2.60 144.83 ± 8.063 44.82 139.50

561 53.81 ± 3.00 167.01 ± 9.29 51.70 160.60

775 74.49 ± 4.15 231.14 ± 12.86 70.98 221.97

837 80.22 ± 4.47 249.79 ± 13.89 76.92 239.72

944 91.07 ± 5.06 282.06 ± 15.68 87.01 270.56

Table 4: Simulated single scattering results for five million simulated events using both Methods. Now both
methods are in better agreement. All rates are in Hz/µA.

and note that our GEANT4 simulation samples the double scattering phase space, V , according to
the probability density function

f(~v) = C exp

[
x2

2σ2
x

+
y2

2σ2
y

+
E2

2σ2
E

]
sin θ sinχ. (20)

With the normalization condition:

1 =

∫
V
g(~v)dv (21)

1

C
= I ×

∫ ∞
−∞

e−x
2/2σ2

xdx

∫ ∞
−∞

e−y
2/2σ2

ydy

∫ ∞
−∞

e−E
2/2σ2

EdE

∫ 2π

0
dφ

∫ ψmax

ψmin

dψ

∫ χmax

χmin

sinχdχ (22)

Where

I =

∫ d

0

∫ π

0

[∫ ξmax(θ,z)

0
dξ

]
sin θdθdz (23)

The variable ξ refers to distance from the first scattering point and ξmax(θ, z) is the maximum
distance the second scattering can be generated given the initial scattering position and angle.
Since the simulation also has the caveat that all electrons generated must not have lost more than
500 keV in the target (these would not be counted in our physical asymmetry in any case), we put
a distance limit, D = 157µm, for those particles travelling at θ ≈ π/2. Thus we define:

ξmax(θ, z) =

{
d−z
cos θ

[
1−H

(
d−z
cos θ −D

)]
+DH

(
d−z
cos θ −D

)
if θ ≤ π/2

−z
cos θ

[
1−H

( −z
cos θ −D

)]
+DH

( −z
cos θ −D

)
if θ > π/2,

(24)

where H(x) is the Heaviside step function. Plugging this in we have

I =

∫ d

0

∫ π

0
ξmax(θ, z) sin θdθdz. (25)
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Examining the integral over θ we see∫ π

0
ξmax(θ, z) sin θdθ = (d− z)

∫ α1

0
tan θdθ +D

∫ α2

α1

sin θdθ + (−z)
∫ π

α2

tan θdθ, (26)

where cosα1 = (d− z)/D with 0 ≤ α1 < π/2 and cosα2 = −z/D with π/2 ≤ α2 < π. We then see:

(d− z)
∫ α1

0
tan θdθ = −(d− z) log(

d− z
D

), (27)

D

∫ α2

α1

sin θdθ = d, (28)

−z
∫ π

α2

tan θdθ = z log(
z

D
), (29)

∴
∫ π

0
ξmax(θ, z) sin θdθ = d

[
1− log(

d− z
D

)

]
+ z

[
log(

d− z
D

) + log(
z

D
)

]
. (30)

Therefore we see

I =

∫ d

0

(
d

[
1− log(

d− z
D

)

]
+ z

[
log(

d− z
D

) + log(
z

D
)

])
dz (31)

= d2 (32)

regardless of our initial choice of D (so long as it is a physically possible value). Returning to the
normalization condition on f(~v), we see:

1

C
=
(
d2
) (√

2πσx

)(√
2πσy

)(√
2πσE

)
(2π)

(π
9

)(
cos

π

36
− cos

π

18

)
. (33)

Given the definitions above, we can calculate the rate from double scattering

R =

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

∫
V

f(~v)

g(~v)
g(~v)dv (34)

Using the Reimann sum method is not available to us due to the high dimension of the integral
and the difficulty of the integration limits. So we instead try to integrate numerically with a Monte
Carlo estimator:

R =
1

n

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

n∑
i

f(~vi)

g(~vi)
(35)

=
1

C

1

n

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

n∑
i

σ1(~vi)σ2(~vi)ε(χi, ψi) (36)

=
2π2

9

(
cos

π

36
− cos

π

18

)
NB

(
NAρd

A

)2 1

n

n∑
i

σ1(~vi)σ2(~vi)ε(χi, ψi) (37)

Results of this method are shown in Table 5. Combined results of single and double scattering
rates can be seen in Table 6 and Fig. 3.
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d [nm] Rfit δRfit Rsim δRsim

52 0.188 0.047 0.160 0.019

215 3.213 0.795 2.573 0.365

389 10.517 2.603 8.650 1.320

487 16.483 4.079 13.957 2.266

561 21.873 5.413 19.158 3.227

775 41.743 10.331 29.984 4.853

837 48.690 12.050 47.164 10.156

944 61.934 15.328 64.584 10.977

Table 5: Results of simulations of 100,000,000 events from the double scattering generator compared with
the quadratic fit to data from https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf . All rates are
given in units of Hz/µA.

d [nm] Rdata δRdata Rsim δRsim

52 9.93 0.09 10.42 0.23

215 46.50 0.48 45.06 1.01

389 82.58 1.04 85.41 2.15

487 97.74 1.00 110.39 3.11

561 128.66 1.32 129.56 4.05

775 178.30 1.86 182.92 5.92

837 209.30 2.15 213.02 10.79

944 246.00 2.53 252.15 11.73

Table 6: Results of summed simulations for both single and double scattering compared with data from
https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf. All rates are given in units of Hz/µA.
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Figure 3: Combined rates from single and double-scattering simulations (red) compared to results from
data (blue). Data from https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf.

4 Combined Asymmetry

With the rates in both left and right detectors for single and double scattering, we can calculate
the Mott asymmetry as:

A =
R1
L +R2

L −R1
R −R2

R

R1
L +R2

L +R1
R +R2

R

, (38)

where the subscript refers to the left or right detector and the superscript refers to single or double
scattering. The results of these calculations can be seen in Fig. 4 and Table
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Figure 4: Simulated asymmetries (red) compared with data (blue).

d Asim δAsim Adata δAdata

52 44.45 2.23 43.26 0.11

215 41.54 2.24 40.97 0.07

389 38.38 2.48 39.18 0.08

487 38.68 2.77 38.56 0.08

561 32.37 2.98 37.21 0.08

775 34.13 3.11 35.61 0.08

837 31.22 4.79 34.59 0.08

944 31.84 4.41 33.77 0.08

Table 7: Asymmetry as a function of target thickness for simulation and data.
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