Rate Calculations from MottG4 Simulation

Martin McHugh
The George Washington University
mjmchugh@jlab.org

2015-07-01

1 Calculating Rates and the Acceptance Function

The calculation of rates from simulation is of primary importance. The rate is the simplest quantity
with which to compare simulations to data. The rate calculation from a given simulation is a
prediction of the number of events that will hit our detector per unit current per unit time, using
the assumptions in our simulation. All rates quoted in this note will have units of Hz/uA. The
differential rate in our detector from one point in phase space ¥ is:

dR(7) = L(§)0 (7)e(T)dv, (1)

where L(?) is the luminosity, o(?) is the cross-section of the physics of interest and e(?) is the
acceptance function of our detectors (essentially the chance that an event near ¢ will be detcted).
The total rate our detector sees is simply the integral of Eq. :

R = /V AR (7). @)

While £(¥) and o(¥) are often known quantities, €(¥) is a value obtained solely by simulation.
Figure 7?7 shows a plot of the acceptance function with respect to the different variables of single
scattering. As is demonstrated in the figure, the acceptance function’s behavior is well characterized
solely by it’s dependence upon scattering angle, xy and azimuthal angle ¢. Thus:

€(0) = e(x, ¥)- 3)

2 Single Scattering Calculation

For a single scattering event, our phase space vector becomes ' = (z,y, z, F, x, %) and the volume
element is dv = dxdydzdEdxdy. The total rate in a detector is then:

R:/‘/ﬁ(ﬁ)a(ﬁ)e(ﬁ)sinxdv. (4)
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Figure 1: Simulated Acceptance Functions for each of the six degrees of freedom in single scattering. Results
are from the Left detector for 10 million events thrown. Only €(x) and e(¢)) show large dependence.

The integrals over x,y are trivial. Additionally, the dependence of o (%) upon z and E are small
enough to ignore in our case. This yields:

min min

N "Z)maac Xmaz
R =4 [ [ ol when. ) simavas, (5)
X

Where N4 is Avogadro’s number, p is the density of the target foil, A is the atomic weight of the
foil material, Np is the number of electrons per second in 1 pA, and d is the target thickness. From
this point there are two methods that I've attempted to approximate this integral numerically.

2.1 Method 1: Reimann Sum

We divide the 2D integral into N, x Ny bins in x and 1 of size AxAvy. Then Eq. can be
estimated using

N, N,
N X P
R =~ %pNBdZ Z oijeij sin i Ax A, (6)
i=1 j=1



Where 05 is the average cross-section for all events thrown in the 7;’th bin and ¢;; is the acceptance
function for the bin. The uncertainty, R, from this method is given by

Ny N
N 2 x Y
SR?* = (fNBdAXAlﬁ) Z Z (e?jéafj + afjée?j) sin? ;. (7)
i=1 j=1

Figure [2| shows the binned cross-section and acceptance function for a run. This method gives good
results which are in decent agreement with data as seen in Table 1.
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Figure 2: On the left: Simulated average cross-section as a function of scattering angle, y, and azimuthal
angle, v, for the left detector. On the right: Simulated acceptance function, e(x,?). Results from a
simulation of one million events and a 52 nm gold foil.

d (nm) Rsim Rt Radata

52 10.25 £ 0.67 9.75 £ 0.50 9.93 = 0.09

215 42.49 + 1.46 40.32 + 2.05 46.50 £ 0.48
389 77.15 £2.08 | 72.95 £ 3.70 | 82.58 £ 1.04
487 95.75 + 2.40 91.33 + 4.62 97.74 + 1.00
561 109.89 4+ 2.62 | 105.21 £ 5.34 | 128.66 + 1.32
775 153.20 £ 3.28 | 145.34 £ 7.38 | 178.30 £ 1.86
837 163.88 £ 3.45 | 156.97 £ 7.97 | 209.30 £ 2.15
944 186.50 £ 3.77 | 177.04 £ 8.99 | 246.00 £ 2.53

Table 1: Comparison of simulated rates to data. R, are the simulated rates for single scattering calculated
using the Reimann sum method on one million events at each target thickness. Rg¢ is the linear portion of
the quadratic fit to data, Rqata. Data and fit taken from: https://wiki.jlab.org/ciswiki/images/e/
ef /Rates.pdf . All rates are given in units of Hz/uA.


https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf
https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf

2.2 Method 2: Monte Carlo Integration

In this method we try to numerically estimate the integral in Eq. with a Monte Carlo method.
Examining Eq. without simplifying, we see

Rt Mo [ QﬁQ-yQ—“*ﬂmﬁaw¢mm%uwﬁme (8)
1%
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The GEANT4 code throws single scattering events by sampling the space V' according to the proba-
bility distribution function,

a? y? (E — pp)®
v)=C - - == — ——_—"|siny, 10
1@ P ( 202 205 202E > S (10)
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Looking back at Eq. (§)), we can write it in terms of f(7) and g(¥) as

—

Nap 9(v)
RZJ?%K%@

At this point we can estimate the integral using Monte Carlo integration

£(@)dv. (13)

Nap “~ ()
R~ ——Np — 14
4 Va2 ) (14
m T w1 Nap =
=3 [cos 36~ Co8 ﬁ} ANBd; o (Es, zi, Xi» Vi) €(Xir Vi) (15)

where n is the number of events thrown. Using this method we see some issues as highlighted
in Table In particular, the rates are similar at small foils and then diverge as d increases.
Additionally, the uncertainty provided by the Monte Carlo method is much too small, particularly
in light of Table [3] which shows the dependence upon n.

3 Double Scattering Rates

We look again at the differential form of the scattering rate. In this case we consider the rate by
pieces. The rate from the initial scattering at position (x,y, z) and energy (prior to entering the



Method 1 Method 2
d (nm) RL Rr Ri Rr
52 4.9925 £ 0.278161 | 15.328 4 0.857051 | 4.70594 | 14.3801
215 20.6304 + 1.15056 | 64.3406 + 3.5734 | 18.5732 | 58.4646
389 37.5026 + 2.08311 | 116.799 + 6.47384 | 33.9492 | 105.638
487 46.318 £ 2.59238 | 145.19 4+ 8.07558 | 41.5134 | 130.262
561 53.9568 + 3.00251 | 165.831 + 9.26319 | 48.2993 | 147.777
775 74.3995 4+ 4.14572 | 232.009 + 12.8863 | 66.7659 | 205.792
837 80.1061 + 4.47106 | 247.645 £ 13.8336 | 71.5765 | 222.249
944 90.757 £ 5.04853 | 282.25 4 15.6653 | 80.4706 | 253.798

Table 2: Simulated single scattering results for one million simulated events using both Methods. It is
apparent that the two methods diverge at higher target thickness.

Method 1
# Events (M) RrL Rr

1 95.755 | 297.138
95.3268 | 297.042
95.9154 | 296.887
95.6782 | 297.705
95.6821 | 298.066
95.655 | 298.174
95.7495 | 298.209
95.7276 | 298.514
95.7947 | 298.681
95.9183 | 298.902

Method 2
RrL Rr
85.6182 | 267.592
87.8213 | 276.02
89.9372 | 279.687
90.9824 | 283.096
91.6055 | 286.014
92.0939 | 288.068
92.6041 | 289.371
92.8742 | 290.194
93.103 | 290.973
93.3508 | 291.551
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Table 3: A comparison of results from each method for a target 1000 nm thick all results are in Hz/uA. Tt
should be noted that the uncertainty for Method 1 is constant as well (it’s dominated by the averaging over
target positions, energies etc.) with values of 0Ry = 5.34 Hz/uA and 0Rp = 16.58 Hz/uA. Thus the two
methods are consistent with around 5 million events.

target), E towards the second scattering position along direction (6, ¢) is given by:

dR1 (V) = L(V)o1(V)dv (16)
_ Nap Np 22y E? .
=A@ Poroyon exp 302 275 E o1(z, E, 0, ¢)sin 0dzdydzdEdOdp  (17)
The rate that our detector sees then from the second scattering is then:
dR(®) = ML R (i i
(’U) - TdRI(U)O—Q(zv E7 57 97 ¢> X5 ¢)6(X7 ¢) S dedxdw (18)
We define
22 Y2 2
9) = exp | 5 + 25 + | o1 (D)o (@)e(x, ) sin fsin x (19)
200 20, 20%



Method 1 Method 2

d (nm) Ry Rr R Rr
52 5.02 + 0.28 15.44 £ 0.86 5.05 | 15.57
215 20.67 + 1.15 | 63.96 + 3.56 | 20.20 | 62.52
389 37.10 & 2.07 | 115.52 £ 6.43 | 35.84 | 112.35
487 46.51 4+ 2.60 | 144.83 £ 8.063 | 44.82 | 139.50
561 53.81 + 3.00 | 167.01 £ 9.29 | 51.70 | 160.60
775 74.49 £ 4.15 | 231.14 £+ 12.86 | 70.98 | 221.97
837 80.22 4 4.47 | 249.79 £ 13.89 | 76.92 | 239.72
944 91.07 + 5.06 | 282.06 + 15.68 | 87.01 | 270.56

Table 4: Simulated single scattering results for five million simulated events using both Methods. Now both
methods are in better agreement. All rates are in Hz/pA.

and note that our GEANT4 simulation samples the double scattering phase space, V, according to
the probability density function

22 2
f(0) = Cexp [ + + ] sin € sin x. (20)

v
202 202 20%,
With the normalization condition:
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Where

d pm Emaz(0,2)
I:/ / / d¢ | sinfdfdz (23)
o Jo |Jo

The variable £ refers to distance from the first scattering point and &4, (6, z) is the maximum
distance the second scattering can be generated given the initial scattering position and angle.
Since the simulation also has the caveat that all electrons generated must not have lost more than
500 keV in the target (these would not be counted in our physical asymmetry in any case), we put
a distance limit, D = 157 pum, for those particles travelling at 6 ~ 7/2. Thus we define:

d—z d—z d—z .
Emaz(0,2) = m[l_H(cosa_D)] +DH(COSG_D) if o <m/2 (24)
’ CgsZG [1 - H (C;SZQ B D)] +DH (c;SZG B D) if 6 > 7T/2,
where H(x) is the Heaviside step function. Plugging this in we have
d pm
I= / / Emaz (0, 2) sin OdOdz. (25)
0 JoO



Examining the integral over 8 we see

e a1 ag s
/ Emaz(0,2)sin0dh = (d — z)/ tan 0d6 + D/ sin 0d0 + (—=z) / tan 0d6, (26)
0 0 o 2

where cos vy = (d—z)/D with 0 < aq < 7/2 and cosay = —z/D with /2 < ap < m. We then see:

o d—z
(d—=2) /0 tan6df = —(d — z) log( ), (27)
D ’ sin 0df = d, (28)
—z /Tr tan 0d0 = z log(%), (29)
/ Emaz(0,2)sin0db = d [1 - log(dD )] +z [log(dD )+ log(D)] (30)

Therefore we see

I:/Od <d [1—log(dD )]+z[log(dD )+1og(;)Ddz (31)
= (32)

regardless of our initial choice of D (so long as it is a physically possible value). Returning to the
normalization condition on f(¥), we see:

b 0 (v () (V370 ) () cn gy e )

Given the definitions above, we can calculate the rate from double scattering

_ [ Nap\? Np FO) o
R‘( 4 > e 2osoyon by )¢ (34

Using the Reimann sum method is not available to us due to the high dimension of the integral
and the difficulty of the integration limits. So we instead try to integrate numerically with a Monte
Carlo estimator:

_ 1 (Nar)® N —~ f(@)

" ( A ) (27m)3/ 204040 Z 9(@) (35)
_ 11 (Nap 2 Ng
- Cn < A > (27)320,0,05 201 (U;)o2(T;)e(xi, 14) (36)
. 272 T T NA,Od 2 1 ) )
= T (COS % — COS TS) NB ( A ) E ;O’l(vi)ag(’ui)e(xi’qj}i) (37)

Results of this method are shown in Table Combined results of single and double scattering
rates can be seen in Table [6] and Fig.



d [nm] Rﬁt 5Rﬁt 7:\)'sim 5Rsim
52 0.188 | 0.047 | 0.160 | 0.019
215 3.213 | 0.795 | 2.573 | 0.365
389 10.517 | 2.603 | 8.650 | 1.320
487 16.483 | 4.079 | 13.957 | 2.266
561 21.873 | 5.413 19.158 | 3.227
775 41.743 | 10.331 | 29.984 | 4.853
837 48.690 | 12.050 | 47.164 | 10.156
944 61.934 | 15.328 | 64.584 | 10.977

Table 5: Results of simulations of 100,000,000 events from the double scattering generator compared with
the quadratic fit to data from https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf|. All rates are
given in units of Hz/uA.

d [nm} Rdata 6Rdata Rsim 6Rsim
52 9.93 0.09 10.42 | 0.23
215 46.50 | 0.48 45.06 | 1.01
389 82.58 | 1.04 85.41 | 2.15
487 97.74 | 1.00 110.39 | 3.11
561 128.66 | 1.32 129.56 | 4.05
775 178.30 | 1.86 182.92 | 5.92
837 209.30 | 2.15 213.02 | 10.79
944 246.00 | 2.53 252.15 | 11.73

Table 6: Results of summed simulations for both single and double scattering compared with data from
https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf. All rates are given in units of Hz/uA.
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Rate vs. Target Thickness
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Figure 3: Combined rates from single and double-scattering simulations (red) compared to results from

data (blue). Data from https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf.

4 Combined Asymmetry

With the rates in both left and right detectors for single and double scattering, we can calculate
the Mott asymmetry as:

_RL+RE—Rp—R%

- 1 2 27

Ry +RI+Rp+R%

(38)

where the subscript refers to the left or right detector and the superscript refers to single or double
scattering. The results of these calculations can be seen in Fig. 4] and Table


https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf

Asymmetry vs. Target Thickness
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Figure 4: Simulated asymmetries (red) compared with data (blue).

d Asim 5Asim Adata 5Adata
92 | 4445 | 223 | 4326 | 0.11
215 | 41.54 | 2.24 | 40.97 | 0.07
389 | 38.38 | 248 | 39.18 | 0.08
487 | 38.68 | 2.77 | 38.56 | 0.08
561 | 32.37 | 298 | 37.21 | 0.08
775 | 34.13 | 3.11 | 35.61 | 0.08
837 | 31.22 | 4.79 | 34.59 | 0.08
944 | 31.84 | 4.41 | 33.77 | 0.08

Table 7: Asymmetry as a function of target thickness for simulation and data.
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