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Abstract 

In order to use particle-in-cell (PIC) simulation codes for modeling collisional plasmas and self-sustained discharges, 
it is necessary to add interactions between charged and neutral particles. In conventional Monte Carlo schemes the time 
or distance between collisions for each particle is calculated using random numbers. This procedure allows for efficient 
algorithms but is not compatible with PIC simulations where the charged particle trajectories are all integrated simultaneously 
in time. A Monte Carlo collision (MCC) package including the null collision method has been developed, as an addition 
to the usual PIC charged particle scheme which will be discussed here. We will also present results from simulations of 
argon and oxygen discharges, and compare our argon simulation results with experimental measurements. 

1. Introduction 

RF and DC glow discharges are used widely in the microelectronics industry. Self-consistent fluid equations 
have been used by Graves and Jensen [1] ,  Boeuf  [2] and Gogolides et al. [3] to study the structural 
features o f  RF and DC glows. However, since these discharges are inherently complex, and the particle velocity 
distributions can be non-Maxwellian, there has been a considerable effort to develop self-consistent kinetic 
models with no assumptions about the distribution functions. Monte Carlo methods have been used extensively 
in swarm simulations [4 -9 ] .  The conventional method of  calculating the time between collisions for each 
particle using a random number can be generalized into efficient algorithms, especially when the null collision 
method is also used [6,10].  However, this conventional method is not compatible with PIC simulations where 
all the charged particle trajectories are integrated simultaneously in time. 

Hence, we have developed a Monte Carlo collision (MCC) package, including the null collision method 
[ 11,14,15] as an addition to the usual PIC charged particle scheme as shown in Fig. 1. A thorough description 
o f  the PIC technique can be found in Birdsall and Langdon (1985, 1991) [16].  Vahedi et al. [ 15] also analyzed 
the PIC techniques and discussed some of  the main issues in PIC simulations of  weakly ionized collisional 
discharges. Here we will discuss only the MCC package. The full three-dimensional character of  a collision 
is modeled with three velocity components. The neutral particles can be assumed, for simplicity, to have a 
uniform density between the boundaries with a Maxwellian velocity distribution. The model is still valid if the 
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Fig. 1. The flow chart for an explicit PIC scheme with the addition of the collision handler, called PIC-MCC. 

neutral density is a function of position and time, as will be discussed. In principle, this scheme can also be 
extended to model Coulomb collisions between charged particles. 

One of the main reasons for simulating weakly ionized collisional plasmas using the PIC-MCC scheme is 
to obtain the self-consistent electron energy distribution functions (EEDFs) in these discharges. Bi-Maxwellian 
EEDFs were measured experimentally in argon RF discharges at 13.56 MHz by Godyak et al. [17]. The 
observed EEDFs at low pressures had very-low energy and high energy components. We show particle-in-cell 
Monte Carlo (PIC-MCC) simulations which produce the same EEDFs. Excellent agreement is obtained between 
the effective low and high electron temperatures in simulations and those measured in the laboratory. We will 
also present results from simulations of oxygen discharges and show EEDFs and density profiles for various 
species. 

2. General description of  the mcc model 

We first describe the Monte Carlo Collision model and then the addition of a null collision process as a 
way to optimize the general MCC scheme. The null collision process can be especially important in modeling 
Coulomb collisions. We define a background species as a species whose density can be described as a function 
of time and space. Particle species, on the other hand, are characterized by super-particles whose distribution 
functions evolve temporally and spatially as the super-particles move in the system in response to the local 
electric field when they are charged. 

Assume the particle species s has N types of collisions with a target species. The target species could be a 
background species or another particle species. The kinetic energy of the ith particle of the incident s species 
is given by 

Ei = 1 2 1 2 _~_ V2i _~_ V2z ) ( 1 )  ~msV i = ~ms(Vix 

This energy is needed in calculating the collision cross sections. The total collision cross section o ' r(£i)  is the 
s u m  

O'T( £i)  = 0"1 (£ i )  -Jr ' ."  '}- O'N( £i) ( 2 )  

where ~rj(£i), for 1 < j _< N, is the cross section of the j th type of collision between the s species and 
the target species. The collision probability for the ith particle is calculated, based on the distance Asi = viAt  

traveled in each time step At, to be 

Pi = 1 -- exp( --AsiO'T(Ei)n t (xi))  = 1 - exp(--AtviO'T(~i)nt(xi) ) (3) 

where n t ( x i )  is the local density of  the target species at the position of the ith particle. 
A collision takes place if a uniformly distributed random number on the interval [0, 1] is less than Pi. If  

a collision occurs, then another random number is chosen to determine the type of collision. The energy and 
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Fig. 2. The addition of the null collision process results in a constant collision frequency over all energies. 

scattering angle of the particle and other fragments involved in the collision are then determined, as we will 
see later, based on the model assumed for that type of collision. 

A collision is assumed to take place in the time interval [t, t + At] at the current position of the ith particle, 
xi ( t) .  In a time-centered PIC scheme, the velocities, vi (t  ÷ At), are generated by interpolating the local electric 
field, Ei ( t ) ,  hence Pi has numerical noise comparable to the local truncation error of  the PIC scheme. I f  Ax is 
chosen for the desired PIC accuracy, no further constraint is present with MCC. 

The time step, At, determines how often to check for a collision and can affect the accuracy of the collision 
model. For any finite At, Pi < 1. In an electron scattering collision, for example, the energy of the scattered 
electron remains roughly constant. Then the probability for n collisions in the same At is roughly P/~. Since 
MCC allows only one collision per particle per At, the generated error, which we define as the number of 
missed collisions in At for a given particle, is 

O(3 

r ,~ ~ p/k _ 1 -~Pi2~°/ (4) 
k=2 

An error of r < 0.01 requires Pi < 0.095, i.e. the time step At should be set so that AsiO'T(gi)nt(xi) would be 
less than or equal to 0.1. 

This scheme is compatible with PIC since the position and velocity of particles are advanced each time 
step. However, it is obvious that calculating Pi for all the particles each time step can be computationally very 
expensive, requiring looking up every particle's kinetic energy. This look-up can be avoided by choosing a 
constant collision frequency z,' such that 

1." = max(nto-Tv) = max(nt)  meax( o'Tv) (5) 
X,~ X 

In a sense all we have done is to introduce another collisional process with a collision frequency which, 
when it is added to the total collision frequency nt(X)O'T(E)V, gives a constant value over all x and S. This 
collisional process is called the null collision since no real interaction occurs. Note that typically the target 
particles are assumed to be uniformly distributed in the system as a background species with a constant nt, in 
which case it is only necessary to obtain the maximum over 8 as graphically shown in Fig. 2. However, in the 
case of, for example, electron-ion recombination, the density of the target particles (namely ions) is typically 
a function of position and time, which would make it necessary to obtain the maximum over x at each time 
step as well. 

The maximum fraction of the total number of particles in the simulation which experience collisions is then 
given by 
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Pnuu = 1 - exp(--v~At) (6) 

The colliding particles are chosen randomly (eliminating duplicates), and each particle is checked for type 
of collision, see Fig. 2, using 

R <_ vl ( g i ) / v  t (Collision type 1) 
/-'1 (£ i ) / / - ' "  < R < (1,~ (£i) +/-'2(£i))//~! (Collision type 2) 

"£~1 z'j( £i) /~" < R (Null collision) 

where R is a random number (R E [ 0, 1 ] ). 
The computational efficiency of this method over the standard method depends on Pnun. For a simulation 

with Ns particles, the standard method requires Ns evaluations of Pi whereas the null method requires only 
Ns Pnun evaluations of Pi. Note that each evaluation of Pi includes calculation of particle energy, £i, collision 
frequencies, v j (£ i )  for 1 < j _< N, and several other floating point operations. Typically Pnult is on the order 
of 10 -2 , so the computational saving can be quite significant. 

3. Collision types 

Typical laboratory gas discharges contain many species, and there are various reactions among these species. 
Bell [ 18] lists over thirty reactions in an oxygen discharge, and the list is by no means exhaustive. In studying 
and modeling these discharges we have taken a subset of these reactions for a few species to study each gas 
and make some comparisons. In each case, the chosen reactions were selected so that the system would model 
a self-sustained and self-consistent discharge. In most cases the selected reactions have the largest reaction rates 
which make them the best candidates. The two gases discussed here are argon, an electropositive atomic gas, 
and oxygen, an electronegative molecular gas. 

3.1. Argon 

The collision model for argon described below has been successfully used to RF capacitively coupled 
discharges [ 15]. Reactions in the simple argon model are 

( 1 ) e + A r  ~ e + A r  (Elastic Scattering) 
(2) e + A r  ~ e + Ar* (Excitation) 
(3) e + A r  ~ e + A r  + + e (Ionization) 

(4) A r  + + A r  -----+ A r  + A r  + (Charge Exchange) 
(5) A r  + + A r  ~ Ar  + + Ar  (Elastic Scattering) 

Here we assume that the argon gas (the neutral species) is maintained uniformly in space, i.e., the neutral 
particles are not followed as particles, and we assume two types of collisions for the ions. (The separation 
between charge exchange and elastic collisions for ions will be discussed in Section 3.1.2.) Note that in some 
electron-neutral collisions, the target neutral particles gain some energy or leave the collision in an excited 
state. However, the dominant electron-neutral collisions will be between the electrons and the background low 
temperature gas particles if the population of the excited and/or energetic neutrals is low enough, which is 
assumed to be the case. The neutral species is also assumed to have a Maxwellian velocity distribution at the 
gas temperature (e.g., TN = 0.026 eV). Hence, the neutrals are much less energetic than an average electron in 
a system, but because of the large neutral-to-electron mass ratio, the momentum of the neutral remains roughly 
unchanged in most electron-neutral collisions. 
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Fig. 3, The  electron-neutral  cross sections in argon. 

Fig. 4. Vector d iagram for scattering collisions. 

3.1.1. Electron-neutral collisions 
The electron-neutral cross sections in the model are the same as the ones used by Surendra, Graves and 

Jellum (1990) [ 12] as shown in Fig. 3. In an electron-neutral elastic collision, the incident electron scatters 
through an angle X which we determine with an approximate differential cross section of the form [ 11 ] 

o ( g , X )  g 

t r (g )  = 4Ir[1 + g s i n 2 ( x / 2 ) ]  ln(1 + g )  (7) 

where g is the energy of the incident electron in electronvolts. This can be solved for cos X from 

f x  o'(g, X) s i n x d x  (8) 

R = f o O . ( g , X  ) s i n x d x  

where R is a random number (R E [0, 1] ) to produce 

2 + g - 2 ( 1 + g )  R 
c o s x  = g (9) 

We use Eq. (9) to determine the electron scattering angle for all types of electron-neutral collisions. For 
energetic incident electrons, Eq. (9) gives mostly small scattering angles (forward scattering) whereas, for low 
energy electrons, the scattering is more isotropic. The azimuthal scattering angle ~b, is uniformly distributed on 
the interval [0,27r], and is determined by 

~b = 27rR (10) 

where R is another random number (R E [0, 1]).  Once X and ~b are known, the direction of the scattered 
velocity is obtained by geometric considerations. In Fig. 4 ¢¢inc and "~scat are unit vectors parallel to the incident 
and scattered velocities, respectively. "~seat is related to ¢¢inc by 

= i sinX sin~b (11) Vscat̂  ~rincCOSX q'-CCinc X "-}-¢¢inc × (i x trine) s i n X c O s ~ b  
sin 0 sin 0 
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where 0 is given by cos 0 = Vinc" ~. Scattered velocity components can then be determined by taking the 
projection of ¢¢scat on  the coordinate axes [ 13]. 

Once the scattering angle X is determined, we can calculate the energy loss of the electron in a scattering 
event from [22] 

2m 
A£ = -~-(1  - cos X) (12) 

where m is the electron mass and M is the mass of the neutral. Although this energy loss is small because of 
the mass ratio, it is the only energy loss mechanism for the low energy electrons with energies less than the 
typical excitation and ionization threshold energies. In an argon discharge, however, this energy loss is not very 
significant because of the Ramsauer minimum in the scattering cross section; see Fig. 3. 

In an excitation collision, the incident electron loses the excitation threshold energy of 11.55 eV and is 
scattered through an angle X determined by Eq. (9). In this simple model, the excited atoms are not followed 
and a very short decay time is assumed for the excited states. This assumption is not accurate for all the excited 
states. In the future, as the model becomes more sophisticated, we intend to follow meta-stables as another 
particle species and allow them to be ionized. For now, the excitation reaction serves only as an energy-sink 
for the electrons. 

In an ionizing event, an electron-ion pair is created, and the energy balance equation becomes 

&cat + £ej -Jc- £i = £inc -I- £N -- £ion (13) 

where £sc~t, £ej, and £inc are energies of the scattered, ejected and incident electrons, respectively. £i and £N 
are the energies of the created ion and the target neutral atom, and £io~ is the ionization threshold energy. 

Because of the large ion-to-electron mass ratio, we can assume that the momentum of the incident electron is 
much less than the momentum of the neutral atom. In other words, the incident electron strips an electron off 
the neutral, and the neutral becomes an ion, continuing on its trajectory virtually undisturbed. This assumption 
allows us to rewrite Eq. (13) as 

£scat + Cej = gin~ - g i o n  (14) 
C~ = £N (15) 

We now need to find an algorithm to partition the remaining energy of the incident electron between the 
scattered and ejected electrons, Eq. (14). The simplest way would be to divide the remaining energy equally 
between the two electrons. A more detailed treatment can be found in Opal et al. (1971) [23] as described by 
Surendra et al. (1990) [ 11]. A simplified form of the differential ionization cross section is taken to be of the 
form [23] 

A(Einc) 
S(£inc'~eJ ) -" ~2j q_ B2(~inc) 

The function A(~inc) is determined from 

O'ion ( ~inc ) -~ 

to be 

( £i~ -- £io,~)/2 

f S(ginc'gej) dgej 
0 

~ionB ( Cinc ) 
A ( Einc ) = arctan( [Ei~c - £io~ ] / [2B ( Cinc ) ] } 

(16) 

(17) 

(18) 
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Fig. 5. The ion-neutral cross sections in argon. 

This equation can be solved for Sej, by inverting the distribution, 

S(ginc, g:j)dg;j' ' (19) g = f :e j  
g.~,x 

;eJ I I s(  Ei.c, C'ej) aC'ey 

where g~mjax = (£i,c - gion)/2,  and R is a random number, (R 6 [0, 1] ). Hence 

Eej=B(Einc)tan[ Rarctan(Einc-Ei°n~]\ ~:'~--~-~incJ J] (20) 

where B(gi, ,c) is a known function [23] (e.g., for argon, B(£inc) "~ 10 eV over a range of 1-70 eV). F-xl. 
(20) is the energy partition function which allows us to divide the remaining energy of the incident electron 
between the scattered and ejected electrons. 

Note that when the energy of the incident electron is just above the threshold, (i.e., (£ i , , c -g io , , ) / (2B(£ inc )  << 
1), Eq. (20) reduces to 

£inc -- £ion 
gel ~-- R( 2 ) (21) 

which means that on average the remaining energy is divided equally between the two electrons. Eq. (20) can 
also be used, with appropriate modifications, for other collision mechanisms such as electron impact detachment 
for negative ions. 

After the energy assignment, each of the scattered and ejected electrons scatters through angles X and ~b 
determined by Eqs. (9) and (10). Now that the electrons are taken care of, we must bring our attention to the 
created ion. As we saw in Eq. (15), the created ion takes the energy and direction of the neutral atom before 
the collision. Therefore we can pick a neutral atom from a 3V Maxwellian distribution at the temperature TN, 
and call it an ion. This gives a very low-temperature Maxwellian source for the ions in the system. This is 
important in analyzing ion dynamics and ion-neutral collisions. 

3.1.2. Ion-neu t ra l  coll isions 
Fig. 5 shows the ion-neutral cross sections used in the model [24]. In electron-neutral collisions, the 

assumption that the neutrals were stationary as compared with the incident electrons made the collision models 
very simple. In ion-neutral collisions, we cannot make the same assumption; in the bulk plasma the ions and 
neutral atoms typically have similar velocities. However, in a reference frame in which the neutral atom is at 
rest, for each ion collision, we can choose a neutral at random from a 3V Maxwellian distribution at TN, and 
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subtract its velocity from the velocity of the incident ion. Note that the incident ions in this frame can have 
higher speeds which affect the type of collision they suffer. Hence, each ion selected to undergo a collision, in 
the null collision scheme, must be transferred into this frame, go through a collision, and be transferred back 
into the laboratory frame by adding the chosen neutral velocity to its velocity. 

In a charge exchange collision, an electron is assumed to hop from the neutral onto the ion, causing the 
neutral to become an ion with zero velocity in the neutral frame. After transferring back to the laboratory frame, 
the new ion leaves the collision with the velocity of the incident neutral, and the new neutral takes the velocity 
of  the incident ion. 

The ion-neutral elastic scattering events are assumed to be hard sphere collisions in which the energy of the 
scattered ions are determined by [22] 

gscat = (1 - a L ) & n c  (22) 

where ginc and ~scat are the energies of incident and scattered ions, respectively. The energy loss factor, aL, is 
given by [22] 

2ml m2 
aL -- (ml + m2) 2 (1 -- cosO) (23) 

where ml and m z  are the ion and neutral masses and O is the scattering angle in the center-of-mass frame. For 

m 1 = m2,  

O = 2X (24) 

where X is the scattering angle in the laboratory frame; hence a/~ = sin z X and 

gscat = ~inc COS2 X (25) 

The angle X can be determined by assuming scattering to be uniform and isotropic in the center-of-mass frame 
which gives 

cos O = 1 - 2R (26) 

where R is a random number (R C [0, 1]).  For O =2X, we have 

c o s x = ~ / 1  - R (27) 

The azimuthal scattering angle ~b is determined with Eq. (10). As in charge exchange, the ion must be 
transferred into a frame in which the neutral particle is stationary, scattered, and transferred back to the 
laboratory frame. 

The separation between charge exchange and elastic scattering for identical collision partners is an artificial 
construct which is useful since it parallels collisions between nonidentical particles. Nonetheless, care must 
be taken to ensure that the prescribed cross sections for each process are consistent with the momentum 
transfer cross section for the ions. The more proper approach would be to use the differential cross section for 
ion-neutral collisions in order to determine the scattering angle which would then be used to determine the 
ion-energy loss from Eq. (25). Vestal et al. [25] used crossed-beam measurements to determine the differential 
cross sections for low-energy A r  + - A r  collisions. Their measurements show that most of the scattering angles 
are either close to 180 degrees in the center-of-mass (which is what we call charge exchange), or close to 
zero degrees (small angle scattering). This suggests that the average ion angle calculated with the differential 
cross section of Vestal et al. [25] may be smaller than the average angle obtained using isotropic hard sphere 
collisions. 
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Unfortunately, measurements of differential cross sections for most ion-neutral collisions are not available, 
and the measurements of Vestal et al. [25] were made in argon for relative ion energies of  2-20 eV. However, 
one can attempt to fit the measured differential cross section with a function of the form 

~(£,0) a(£) 
~ =  (28 )  
A ~ ( £ )  [1 + c o s t +  a ( £ ) ] [ 1 - c o s O +  a ( £ ) ]  

where £ is the relative energy of the incident ion, O is the scattering angle in the center-of-mass, o-(£) is the 
total ion-neutral cross section, and a(£)  is a dimensionless fitting parameter. The parameter A is a normalizing 
factor and is obtained from 

qT 

= o )  sinOdO. 

o 

Eq. (28) is plotted in Fig. 6 for several values of a. According to the measurements of Vestal et al. [25], a is 
on the order of 10 -3 in argon over relative energies of 2-20 eV. 

The differential cross section in Eq. (28) can be used to determine the scattering angle using 

R = ~ t - (S,  O) sin OdO 

f o  o-(£, O) sin OdO 
(29) 

where R is a random number (R E [0, 1] ). Solving this for the scattering angle O in the center-of-mass gives 

c o s t  = (1 + a )  1 -- ( a / ( a + 2 ) )  1-2R 
1 + ( a / ( a  + 2))  l-2R (30) 

Eq. (30) is plotted in Fig. 7 for various values of a and compared with the hard sphere isotropic limit in Eq. 
(26). As expected, for small values of a most of the ion-neutral collisions are either forward or backward 
scatterings in the center-of-mass, whereas for larger values of a the distribution approach the isotropic limit 
where all angles are equally likely. 

The fit to the differential cross section given in Eq. (28) has not been verified for higher relative ion energies, 
however, it is clear that the same analysis can be done with other more exact fits to obtain the scattering angle. 
Presently, we have the two separate reactions for argon, and are in the process of incorporating the differential 
scattering cross sections in our model. 

3.2. Oxygen 

Reactions in our oxygen model are: 

(1) e + O 2  
(2) e + O2 

( 3 ) - - ( 6 )  e + O 2  
(7) e + O 2  

, e + 0 2  
, e + 02(r)  

e + O z ( v = n ,  n =  1,4) 
, e + 02(alAg) 

(Momentum Transfer) 
(Rotational Excitation) 
(Vibrational Excitation) 
(Meta-stable Excitation [0.98 eV] ) 
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Fig. 6. Analytic fit to the measured differential cross section for ion-neutral collisions. The analytic fit is plotted for several values of the 
dimensionless fitting parameter a. 

Fig. 7. Distribution of scattering angles in the center-of-mass obtained with our fit to the differential scattering cross section for various 
values of the dimensionless fitting parameter a, where R is a random number. For small values of a most of the collisions are either 
forward or backward scatterings in the center-of-mass, whereas at larger values of a the distribution approaches the isotropic limit. 

(8)  e + 02 
(9) e + 02 

(10) e + 02 
(11) e + 02 

(12) e + 02 
(13) e + 02 
(14) e + O2 
(15) e + O2 
(16) e + O~ 
(17) e + O -  
(18) O-  + O ~  
(19) O-  + O2 
(20) O -  + 02 
(21) O] + 02 
(22) 0 + 02 

) 

) 

) 

) 

BsXu 

e + 0 2 ( b l ~  -) 
O + O -  
e + 02(clX~, AsX+~) 
e + O(3P)  + O(3P)  

e+O(3P) + O(1D) 
e+O(1D) + O(1D) 
e + O + + e  
e + 0 + O*(3p3p) 
0 + 0  
e + O + e  
0 + 0 2  
O + 0 2 + e  

O-- + 0 2  
02 + O~ 
0 + 0 2  

(Meta-stable Excitation [ 1.63 eV ] ) 
(Dissociative Attachment[4.2 eV ] ) 
(Meta-stable Excitation [4.5 eV] ) 
(Dissociation [6.0 eV] ) 

(Dissociation [8.4 eV] ) 
(Dissociation [ 10.0 eV] ) 
(Ionization [ 12.06 eV] ) 
(Dissociative Excitation [ 14.7 eV] ) 
(Dissociative Recombination) 
(Electron Impact Detachment) 
(Mutual Neutralization) 
(Detachment) 
(Scattering) 
(Charge Exchange) 
(Scattering) 

The 02 particles are assumed to be maintained uniformly in space with a 3V Maxwellian velocity distribution 
at room temperature (TN = 0.026 eV) as a background species. All the other species are followed as particle 
species. Note that the electrons in this model collide with three species, two of which are particle species, 
i.e., the target species are not the same in all electron collisions. For purposes of the null collision method, it 
is easier to divide the electron collisions into three groups. Currently, we do not consider Coulomb collisions 
between charged particles since for low density weakly-ionized discharges, interactions between charged-neutral 
species are the dominant collision mechanisms. 

3.2.1. Electron-02 collisions 
The first fifteen reactions in the list are electron-O2 collisions. The null collision method for these reactions 

is the same as what we had for electron-neutral reactions in argon, since the incident electrons collide off a 
spatially uniform background species. The cross section used for the dissociative attachment reaction is obtained 
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Fig. 9. The cross sections for electronic excitation, dissociative attachment, ionization, and dissociative excitation used in the model. 

from Rapp et al. (1965) [26] and is shown in Fig. 9. The rest of cross sections are from Phelps [36,37] and 
are shown in Figs. 8 and 9. 

The momentum transfer, along with rotational, vibrational, and electronic excitations are included in this 
model to serve as energy loss mechanisms for the electrons. The cross section for rotational excitation is a 
few orders of  magnitude smaller than the other processes and is found to be a relatively unimportant reaction 
compared with the other electron-neutral reactions. On the other hand, the vibrational excitations are found to be 
very important processes and can greatly influence the shape of the electron energy distribution function (EEDF) 
in the system since the cross section for these processes are non-zero only over a small range of  energies. 
Simulations have shown that the addition of vibrational excitations can lead to strongly non-Maxwellian EEDF's 
[38,39]. 

Reactions (7) ,  (8) ,  (10) ,  and (11) in the list above are generation mechanisms for several types of meta- 
stable oxygen molecule (aIAg, blXg, c lXu,  and A3X +) [37].  These reactions are important energy loss 
mechanisms for the electrons. Currently, we do not include two-step ionization processes (via meta-stables 
states). These can be included by adding the appropriate meta-stable species. 

The dissociative attachment reaction is the main bulk negative-ion creation and bulk electron loss mechanisms. 
The incident electron loses the threshold energy of 4.2 eV and is absorbed by the oxygen molecule to form 
a O~- which then dissociates to form the fragments O and O-  [26]. The electron transition is assumed to be 
rapid on a nuclear time scale [28],  so that one can use the Franck-Condon principle to calculate the energy of 
the ejected fragments. The remaining incident electron energy (ginc - gth) is divided between the fragments. 
Since the cross section has a threshold of 4.2 eV and peaks at about 6.5 eV, the created O and O -  typically 
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have energies of 1-2 eV. The fragments are assumed to scatter isotropically. 
Reactions (12) and (13) lead to dissociation of the oxygen molecule; the incident electron loses the threshold 

energies of 8.4 or 10 eV to electronically excite the 02 molecule into a higher state which will then dissociate 
into two O's; the created fragments are assumed to scatter isotropically. The created atoms are each born with 
the most probable energy of about 1-2 eV [ 18,37]. These reaction are the main mechanisms responsible for 
bulk O production. 

Ionization is the sole reaction to produce the positive ions (O~-) in the system. The model used for ionization 
here is identical to that described for argon. The incident electron loses the 12 eV of threshold energy, and 
shares the rest of its energy with the ejected electron according to Fx 1. (20). We assume the function B(ginc) 
in Eq. (20) to have the same value as in the case of argon. 

The dissociative excitation ( 130 nm line excitation) reaction, with a threshold of 14.7 eV, is just added as an 
energy sink for the high energy electrons. However, simulation has shown that this reaction is an unimportant 
one since its cross section is two orders of magnitude smaller than the cross section for ionization. 

In all the electron-t2 reactions (1)-(15) listed above, the incident electrons lose at least the threshold 
energy, and (except for the dissociative attachment reaction) scatter through angles ,g and ~b determined by 
Eqs. (9) and (10). We use the same electron scattering model here as for argon. As discussed previously, in 
an elastic collision, the incident electron loses a small amount of energy calculated from Eq. (12). Note that 
there are important differences between momentum transfer cross section and elastic scattering cross section for 
e-n collisions when using anisotropic differential scattering. If  the momentum transfer collision is the elastic 
momentum transfer cross section then we should use isotropic scattering for X, i.e., Eq. (26) (with O replaced 
with X) and not Eq. (9). Alternatively, we can multiply the elastic momentum transfer cross section by [ 12] 

g ln(1  + g )  
f l (g )  = (31) 

2 [ g - l n ( 1  + g ) ]  

where g is the energy in electronvolts, to get the elastic cross section and then use Eq. (9) to determine the 
scattering angle X [ 12]. If  the momentum transfer collision cross section is the effective momentum transfer 
collision cross section (as defined by Phelps [36,37] ), then we need to multiply it by f l ( g ) ,  to get the sum 
of all cross sections included. We must then subtract all the inelastic cross sections that have been included in 
the effective cross section, (e.g., vibration cross sections) to get the elastic cross section. 

3.2.2. Elec tron-O + collisions 

Since the ion temperature in the bulk plasma is typically much lower than the electron temperature, we take 
the ions as the target particles in this reaction. Note that the ions in this model are followed as particles, and 
the ion density, ni(x, t) is not necessarily uniform in space or constant in time; the collision frequency is a 
function of space and time. Hence, in calculating the null collision cross section from Eq. (5) for this reaction, 
we must also take the maximum v over all x each time step to obtain the instantaneous maximum collision 
frequency. Once the null collision frequency is calculated, we sample the electrons to determine which ones are 
to be recombined. If an electron is to be annihilated, we find an ion partner for the reaction by picking an ion 
in the same cell as the electron. 

The cross section used for the dissociative recombination reaction is obtained from Akhmanov et al. (1982) 
[30] and is shown in Fig. 10. Although the reaction rate for this process is lower than the others, it is important 
to include this process in our model because the fragments in this reaction are typically created with 5-6 eV 
energy. The fragments are assumed to scatter isotropically. This reaction is also responsible for bulk electron-ion 
annihilation. 

3.2.3. E l e c t r o n - O -  collisions 
The negative ions are mainly created in the bulk plasma through the dissociative attachment process which 

gives them 1-2 eV energy. In a typical plasma with a electron temperature of a few electronvolts, the negative 
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ions are clearly trapped in the bulk plasma by the ambipolar potential. Hence the negative ion loss to the 
walls becomes nearly zero, and the density of  the O -  particles builds up in the bulk. To bring the system to 
equilibrium, we must introduce some other loss mechanisms for the negative ions. 

Electron impact detachment is one of the reactions considered in this model to destroy the negative ions in 
the bulk. As in the dissociative recombination case, we take O -  which has a lower temperature in the bulk 
plasma than the electrons, as the target particles in this reaction. The null collision cross section must also be 
recalculated each time step to obtain the instantaneous maximum collision frequency, and we pick negative ion 
partners for the electrons in the same manner as in dissociative recombination. 

The cross section used for this reaction has a threshold of 1.46 eV and peaks at about 30 eV as shown in 
Fig. 10 [ 31 ]. Our model for electron impact detachment is the same as for ionization. The created oxygen atom 
takes the identity of the negative ion and the remaining energy of the incident electron is partitioned between 
the scattered and ejected electrons according to Eq. (20). The function B(Cinc) in Eq. (20) is assumed to be 
roughly 10 eV for this process. 

3.2.4. O -  - 0 + col l is ions 

Among all the negative ion loss mechanisms, mutual neutralization has the highest reaction rate and must 
be included. The average cross section for this process, shown in Fig. 11 peaks as the relative energy of the 
colliding particles approaches zero [32-35].  Although both species have roughly the same temperature as the 
neutrals, we chose the positive ions (O~-) to be the target particles and O -  as the incident projectiles. As in 
the dissociative recombination case, the null collision cross section is recalculated every time step to obtain the 
instantaneous maximum collision frequency, as the density of the target particles is a function and position and 
time. 
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This process is very similar to the ion-neutral collision reactions discussed in Section 3.1.2, because the 
projectiles and target particles in the collision typically have the same velocities. Thus, we find a positive ion 
partner in the same cell for each negative ion selected to undergo a collision, transfer the negative ion into a 
frame in which the positive ion is stationary, and calculate the reaction rate. The negative ion is transferred back 
into the normal laboratory frame if the collision is null, and recombine to create a O and a 02, if the collision 
is real. In this process, the incident particles create an O~ which then relaxes to O and 02. The created species 
have typical energies of  3-6 eV and are assumed to scatter isotropically. 

3.2.5. O -  -- 02 collisions 
Detachment and scattering of  the O -  are the reactions considered in this section. The cross sections used for 

the scattering [41] and detachment [40] reactions are shown in Fig. 12. The target particles are the neutrals, 
which we have assumed to be uniformly distributed in the system. As in the previous section, these processes 
are also very similar to the ion-neutral collision reactions discussed in Section 3.1.2, because the velocities 
of  both projectiles and target particles are roughly the same. Thus, each negative ion selected to undergo a 
collision, in the null collision scheme, is transferred into a frame in which the neutral is stationary, goes through 
a collision, and is transferred back into the normal laboratory frame. 

The scattering process is assumed to be a hard sphere collision. The incident O -  scatters through an angle 
X in the laboratory frame, and transfers some momentum to the neutral particle. The energy of  the scattered 
O -  can be found through the energy and momentum conservation equations to be 

2 

~scat = ~inc l C°S /~ + ~k/c°s2 x "}- 3 (32) 

where ~scat and Ei, c are the scattered and incident energies. Note that since the negative ions and the neutrals 
do not have the same mass ( M o J M  o- = 2), this expression differs from what we obtained for argon ion 
scattering in Eq. (25).  

The angle X can be determined by assuming the scatterings to be uniform and isotropic in the center-of-mass 
frame, which gives 

cosO = 1 -- 2R (33) 
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where O is the scattering angle in the center-of-mass frame and R is a random number (R E [0, 1]). The 
relationship between the scattering angles X and O is [22] 

sin O 
tan X - (34) 

y + cos O 

where y is the mass ratio; in this case y = M o - / M o 2  = 1/2. Solving this for X gives 

x/R(1 - R) 
tan X - (35) 

0.75 - R 

where R is yet another random number (R E [ 0, 1 ] ). 
As we discussed before, the negative ions are typically trapped in the bulk plasma by the time-average 

potential. This scattering process is then the main mechanism for the negative ions to lose energy and thermalize 
with the neutrals. 

The cross section for the detachment process has a threshold at 1.46 eV. This process can serve as a bulk 
negative ion loss mechanism in the system. However, as a result of scattering collisions, the negative ion 
temperature in the bulk, T_, is on the order of TN, the O2 temperature, which makes it very hard for the 
negative ions to get over the threshold energy for detachment. If a detachment collision does occur, an electron 
will be created with a very low energy and is assumed to scatter isotropically. The more massive particles in 
this process, the created O and the scattered 02, leave with most of the incident energy. Since the remaining 
energy is typically small, it is not crucial to derive an accurate model for the energy partition. A simple energy 
partitioning scheme would be to divide up the energy based on the mass ratio of the O and 02. 

3.2.6. O~ - 02 collisions 
Our model for positive ion-neutral collision is identical to the charge exchange model derived for argon 

ions in Section 3.1.2. The cross section is shown in Fig. 13 and has no threshold [42]. The positive ion is 
transferred into a frame in which the neutral is at rest. The ion then goes through a collision and finally is 
transferred back into the laboratory frame. This process is responsible for thermalization of positive ions with 
02. As in Ar + - Ar  collisions, the separation between charge exchange and elastic scattering (not included 
here for O + - 02) is an artificial construct. These collisions can be modeled more accurately if a fit to the 
differential cross section for O~- - 02 collisions is known. 

3.2.7. 0 - 0 2 collisions 
The O atoms are created primarily through dissociation, with typical energies of 1-3 eV. They are also 

created through dissociative attachment, dissociative recombination, electron impact detachment, and mutual 
neutralization with energies of 1-5 eV. In the absence of any other collisions, the O atoms are unaffected by 
the local electric field would simply drift to the walls. 

Currently, scattering is the only collision which the O atoms are allowed to have in the model. The scattering 
event is assumed to be a hard sphere collision which makes our model for this process identical to the scattering 
collision for the negative ions discussed in Section 3.2.5. The cross section is shown in Fig. 14 [42]. The O is 
scattered through an angles X and ~b determined by Eqs. (35) and (10), and loses energy to the neutrals, 02, 
according to Eq. (32). 

4. Comparisons  between PIC-MCC simulations and laboratory measurements in an argon RF discharge 

The Monte Carlo procedure described above is implemented in a one-dimensional electrostatic code called 
PDP1 [ 15]. PDP1 was used to simulate a one-dimensional capacitively-coupled argon RF discharge symmet- 
rically driven at 13.56 MHz, and the simulation results were compared with the laboratory measurements of 
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Godyak et al. [ 17]. This comparison has been reported previously [15]. The experimental system was very 
carefully designed to drive the discharge symmetrically. The discharge, confined radially by a Pyrex glass 
cylinder with a diameter of 14.3 cm, had a cross sectional area of 160 cm 2. All probe measurements were 
made in the mid-plane on the axis of the discharge which occurred between two parallel aluminum electrodes. 
We compare results from PDP1 with those measured by Godyak et al. in an argon RF discharge with a gap 
separation of 2 cm, and discharge current of 2.56 mA/cm 2. Fig. 15 shows the electron energy probability 
function (EEPF) obtained from PDP1 at the gas pressure of 100 mTorr. We refer to the effective temperature 
and density associated with the low-energy electrons as 7~ and n~ (labeled 7"1 and nl in Fig. 10 of Godyak et 
al. [ 17] ). We also use Th and nh for the same quantities associated with the high energy group (labeled T2 
and n2 in Fig. 10 of Godyak et al. [ 17] ). The effective temperature of the high energy electrons obtained from 
PDP1 is in excellent agreement with Godyak's measurement, while the temperature of the low energy electrons 
from PDP1 is slightly higher. This higher temperature may be due to numerical heating (so-called self-heating) 
[ 16,43,15] of  the electrons in PDP1. 

The EEPFs measured by Godyak et al. [ 17] ,(in Fig. 16 of [ 17] ) also vary considerably in detail, being 
convex at high pressures and concave at low pressures. For the 2 cm gap discharge, the transition occurred at a 
neutral gas pressure of roughly 350 mTorr. Simulation results from PDP1, shown in Fig. 16, display the same 
convex-concave transition from low gas pressures to high pressures. The change in the shape of the EEPFs is 
proposed by Godyak et al. [ 17] to be a transition in the electron heating-mode from predominantly collisionless 
heating at low-pressures to collisional heating at high pressures. This point was confirmed by Vahedi et al. 
[15]. 

The effective temperatures for the low and high energy electron groups obtained from simulation with and 
without secondaries, shown in Fig. 17, are in very good agreement with those measured by Godyak et al. [ 17]. 
The effective bulk temperatures obtained from simulation with secondary electron emission are slightly, but 
not significantly, higher than in cases with no secondaries. At higher pressures, where the EEPFs lose their 
bi-Maxwellian profiles, the effective temperature of both groups of electrons tends to be the same. 

5. PIC-MCC simulations of capacitively-coupled oxygen RF discharges 

Note that the reactions included for oxygen in Sec. 3.2 does not include ionization of atomic oxygen. Hence, 
this model is adequate only for modeling weakly dissociated oxygen discharges in which one would expect 
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Fig. 15. The EEPF obtained from a current driven argon RF discharge simulation driven at 13.56 MHz with a discharge current of 2.56 
rnA/cm 2 in a 2 cm gap and a neutral pressure of 100 mTorr. The dashed lines represent the two temperature Maxwellian distribution of 
the discharge. 

Fig. 16. The EEPFs from a current-driven argon RF discharge simulations running at 13.56 MHz with a 2 cm gap over a range of pressures. 

O + to be the dominant positive ion species, and 02 as the dominant neutral species in the discharge. However, 
as the fractional dissociation (no/no2) scales directly with the electron density, the low fractional dissociation 
assumption is typically justified in conventional capacitive RF discharges where the electron density is relatively 
low (ne ~ 109 cm-3) .  For modeling high density sources where the electron density is two to three orders of 
magnitude higher (ne ~ 1012 cm-3) ,  one needs to also include reactions involving O +. 

We incorporated the Monte Carlo scheme described in Section 3.2 in PDP1 to model a capacitively coupled 
oxygen discharge at relatively low input powers. The simple scaling law developed by Lichtenberg et al. 
[38] for electronegative discharges predicts that, at low input powers and relatively high pressures, the ratio 
of the negative ion density to the electron density at the center of the discharge is greater than one, i.e., 
tit = n_ (O)/ne(O) > 1, where n_ = no- .  Simulation results for a0 and n+, positive ion density, are plotted 
in Fig. 18 versus the input power for two neutral pressures of 10 and 50 mTorr. Note that as the input power 
increases, ion and electron densities increase, while a0 decreases, which verifies the scaling of Lichtenberg et 
al. [38]. 

The simple model of Lichtenberg et al. also predicts the spatial density profiles of the electrons, positive ions 
and negative ions in the system. A comparison of time-averaged density profiles obtained from PDP1 simulation 
and the analytic profiles of Lichtenberg et al. is shown in Fig. 19 at 50 mTorr, 0.02 W/cm 2, and a gap size of 
4.5 cm. Because the system is symmetric, Fig. 19 shows the density profiles for only half of the system. 

We can divide the system into three regions, from the center of the symmetric discharge to the driven 
electrode. First is a central electronegative region where n _ ( x ) / n e ( X )  > 1, and potential variations are on 
the order of the negative ion temperature (T_ ,-~ T+ << Te). In this region, due to small potential variations, 
the electron density is essentially constant. Once the potential variations become larger than the negative ion 
temperature the density of negative ions becomes negligible and we enter an intermediate electropositive region. 
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Fig. 18. The ratio of negative ion to electron density (top) and positive ion density (bottom) as a function of input power for two neutral 
pressures of 10 and 50 reTort. The length of the system was chosen to be 4.5 cm for the 50 mmTorr case and 6.0 cm for the i0 mTorr 
case. 

In this region, the usual ambipolar fields retard the electrons and accelerate the ions to arrive into the sheath 
with energies on the order of  the electron temperature. The last region is a large capacitive sheath which further 
accelerate the ions toward the electrode. Note that the simple profiles of  Lichtenberg et al. compare favorably 
with the time-averaged density profiles from PDP1 simulation. 

As the plasma becomes more electronegative, the central region expands at the expense of  the electropositive 
region to the limit where the Bohm criterion is modified to account for the presence of  negative ions near the 
plasma sheath boundary. On the other hand as the negative ion dens i ty  decreases, the central region shrinks 
and the negative ions become confined to the very center of  the discharge. Our reasoning here assumes that the 
negative ions are in a Boltzmann equilibrium with the potential and that the negative ion temperature is much 
smaller than the electron temperature, which has been verified by PDP1 simulations. 

Fig. 20 show two typical electron energy distribution functions in an oxygen capacitively coupled discharge. 
Both EEDFs at 10 and 50 mTorr are non-Maxwellian. The non-Maxwellian feature of  EEDFs has also been 
seen in Boltzmann simulations of  molecular gases and is largely due to relatively large cross sections o f  low 
energy inelastic coll isions,  such as vibrational excitations. Electron sheath heating at low pressures [ 17] can 
also distort the EEDFs. 
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Fig. 19. Density profiles of electrons, positive and negative ions in a capacitively coupled oxygen RF discharge at 50 mTorr, 0.02 W / c m  2, 
and a gap size of 4.5 cm. Because the system is symmetric, the density profile is plotted for only half of the system. 

Fig. 20. Electron energy distribution functions obtained from simulations of capacitively coupled oxygen RF discharges at 10 and 50 mTorr. 

6. Conclusions 

A Monte Carlo collision (MCC) handler, including the null collision method, has been developed as an 
addition to the PIC scheme for modeling self-sustained discharges. The full three-dimensional character of a 
collision is modeled with three velocity components. A subset of typical reactions present in laboratory gas 
discharges is modeled for argon, an electropositive gas, and oxygen, an electronegative gas. The addition of the 
null collision method makes the scheme computationally more efficient, as the collision frequency increases, 
so does the fraction of particles undergoing collisions, and more time is spent in the MCC handler (see Fig. 
1). Typically, the fraction of time taken up by the MCC handler per time step is about 10-20%. This Monte 
Carlo scheme is implemented in PDP1 [15],  a one-dimensional code electrostatic code, and PDP2 [44] a 
two-dimensional electrostatic code for simulating processing plasmas. Comparisons of argon simulation results 
with laboratory measurements of Godyak et al. are very favorable. 
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