Ph.D. Candidacy Exam: An Introduction to Electron Polarimetry

Greg Blume¹, Sylvain Marsillac¹, Joe Grames², Matt Grau¹, Yuan Zhang¹, Helmut Baumgart¹

¹Department of Physics, Old Dominion University, Norfolk VA, 23529 USA ²Thomas Jefferson National Accelerator Facility, Newport News VA, 23606 USA

- Introduction
- Mott Scattering Polarimeters
 - Theory
 - Retarding-Field Mott
 - Thin-Foil Mott
 - Experimental Results
- Compton Transmission Polarimeters
 - Theory
 - Compton Transmission
 - Experimental Results
- Comparison
- Conclusion

Introduction

- Mott Scattering Polarimeters
 - Theory
 - Retarding-Field Mott
 - Thin-Foil Mott
 - Experimental Results
- Compton Transmission Polarimeters
 - Theory
 - Compton Transmission
 - Experimental Results
- Comparison
- Conclusion

Introduction

Polarized electron beams are important for multiple applications

Material Science

 Spin-polarized low energy electron microscopy (SPLEEM) is used to study magnetic micro-structures

Nuclear Physics

 Parity violation experiments at Jefferson Lab to explore and understand the Standard Model

High Energy

 Studying spin effects on particle dynamics in high energy storage rings like the future EIC at BNL

UMCS, 2022

JLAB, 2021

BNL, 2023

4/31

Introduction (cont.)

• Electron polarimeters measure the polarization of an electron beam

э

Introduction (cont.)

• Beam energy is the largest deciding factor

- Three methods are applicable below 10 MeV
- Discuss theory, operation, and results of each method at Jefferson Lab

Introduction

Mott Scattering Polarimeters

- Theory
- Retarding-Field Mott
- Thin-Foil Mott
- Experimental Results
- Compton Transmission Polarimeters
 - Theory
 - Compton Transmission
 - Experimental Results
- Comparison
- Conclusion

Mott-Scattering Polarimetry

 Mott scattering makes use of electrons scattered elastically off the Coulomb field of a high-Z target like gold (Z= 79)

$$\sigma(\theta, \phi) = I(\theta)[1 + S(\theta)\vec{P} \cdot \hat{n}]$$

• An electron beam transversely polarized to the scattering plane will generate an asymmetry at θ

 Detectors placed at ±θ will have a count of electrons that corresponds to either 1 + PS(θ) or 1 - PS(θ)

8/31

Mott-Scattering Polarimetry (cont.)

• Detectors are placed at the maximum of $S(\theta)$

• Count asymmetry between $\pm \theta$

$$A = \frac{N_L - N_R}{N_L + N_R} = \frac{1 + PS(\theta) - 1 - PS(\theta)}{1 + PS(\theta) + 1 - PS(\theta)} = \frac{2PS(\theta)}{2} = PS(\theta)$$

Retarding Field Mott Polarimeters

• Grid bias linear extrapolation used to exclude inelastic events

- Electron count continues to decrease approaching initial beam energy
- Counts diminishes by an order of magnitude after threshold

Results — Retarding Field Mott Polarimeter

• Gold target retarding field Mott polarimeter at Jefferson Lab

Greg Blume (ODU)

Qualifying Exam

October 30th, 2023

Results — Retarding Field Mott Polarimeter

• Linear extrapolation to isolate elastic scattering

12/31

Thin-Foil Mott Polarimeters

• Nanometer thick target used to generate the Left-Right asymmetry

Greg Blume (ODU)

October 30th, 2023 13 / 31

Results — Thin-Foil Mott Polarimeter

• Thin foil Mott polarimeter at the UITF beam-line

- ∢ ⊒ →

14/31

Results — Thin-Foil Mott Polarimeter

15/31

- Introduction
- Mott Scattering Polarimeters
 - Theory
 - Retarding-Field Mott
 - Thin-Foil Mott
 - Experimental Results

• Compton Transmission Polarimeters

- Theory
- Compton Transmission
- Experimental Results
- Comparison
- Conclusion

Compton Transmission Polarimetry

• Polarized photons created from the polarized electron beam are used to measure a transmission asymmetry

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}^2 \sigma^0}{\mathrm{d}\Omega} \left[1 + P_{\mathrm{t}} P_{\mathrm{Y}}^{\mathrm{c}} A_{\mathrm{C}}(\theta) \right] = \frac{\mathrm{d}^2 \sigma^0}{\mathrm{d}\Omega} \left[1 + P_{\mathrm{e}}^{\mathrm{I}} \mathcal{A}_{\mathrm{eff}} \right]$$
$$\mathcal{A}_{\mathrm{eff}} = P_{\mathrm{t}} \mathcal{T} A_{\mathrm{C}}(\theta)$$

• At small angles $A_{\rm C}(\theta) \approx \mu_1 L$

Greg Blume (ODU)

October 30th, 2023 17 / 31

Compton Transmission Polarimetry (cont.)

• Bremsstrahlung photons scattering in the polarized target cause the transmission asymmetry

$$A_{\mathsf{T}} = rac{N^+ - N^-}{N^+ + N^-} pprox P_{\mathrm{e}}^{\mathsf{I}} P_{\mathsf{t}} \, \mu_1 \mathcal{T} \, L = P_{\mathrm{e}}^{\mathsf{I}} \mathcal{A}_{\mathsf{eff}}$$

• \mathcal{A}_{eff} is very geometry dependent which makes is computationally difficult

Compton Transmission Polarimeters

- Asymmetry is found between helicity states
- Event rate is too high to resolve individual events
- Resolution integrate over the time of one helicity state

< □ > < 凸

Calibration — Compton Transmission Polarimeter

• Compton Transmission polarimeter at Jefferson Lab

Radiator	0.6 cm thick Cu		
Collimator	14.6 cm Cu w/ 0.8 cm bore		
Analyzing Magnet	7.5 cm Fe Core		
Detector	$Bi_4Ge_3O_{12}$		

Greg Blume (ODU)

Qualifying Exam

October 30th, 2023

20 / 31

Calibration — Compton Transmission Polarimeter (cont.)

- Target Saturation is found > 5 A required for consistent analyzing power
- \bullet Linearity is required for an \mathcal{A}_{eff} that is NOT current dependent

Calibration — Compton Transmission Polarimeter (cont.)

• Calibration runs are performed to extract the asymmetry

• \mathcal{A}_{eff} is functionally equivalent to the Sherman function

Beam Current	6 nA	Beam Size	\sim 0.2 mm
--------------	------	-----------	---------------

- Introduction
- Mott Scattering Polarimeters
 - Theory
 - Retarding-Field Mott
 - Thin-Foil Mott
 - Experimental Results
- Compton Transmission Polarimeters
 - Theory
 - Compton Transmission
 - Experimental Results

Comparison

Conclusion

	20 keV Retarding	180 keV	5 MeV	5-7 MeV
	Field Mott†	Thin Foil Mott*	Thin Foil Mott‡	Compton Transmission*
Effective				
Analyzing	20.1	38.0	39.2	1.2-1.3
Power (%)				
Figure of	$\sim 10^2$	$\sim 10^3$	$\sim 10^{6}$	~10
Merit (% ² nA)	10	10	10	
Spin	Transverse	Transverse	Transverse	Longitudinal
Direction	Transverse	Transverse	Transverse	Longitudinai
Target	No	No	No	Ves
Polarization	110		110	103
Beam	20	180	5000	5000-7000
Energy (keV)	20	100	5000	3000-7000
Beam	10	Б	1000	6
Current (nA)	10	5	1000	5
Detection	Primary (<i>e</i> ⁻)	Primary (e ⁻)	Primary (<i>e</i> ⁻)	Secondary (γ)

References: *(Blume et al., 2023) A Compton transmission polarimeter for DC and SRF electron photo-injectors †(McCarter et al., 2010) A low-voltage retarding-field Mott polarimeter for photocathode characterization ‡(Grames et al., 2020) High precision 5 MeV Mott polarimeter

æ

イロト イボト イヨト イヨト

- Introduction
- Mott Scattering Polarimeters
 - Theory
 - Retarding-Field Mott
 - Thin-Foil Mott
 - Experimental Results
- Compton Transmission Polarimeters
 - Theory
 - Compton Transmission
 - Experimental Results
- Comparison
- Conclusion

- Electron polarimetry is an important tool in the measurement of spin polarization of electron beams
- Many different methods exist depending on the criteria of the experiment
- < 10 MeV the choices are limited to Retarding Field Mott, Thin Foil Mott, and Compton Transmission polarimeters
- Selecting the appropriate technique is key in making a good measurement
- Jefferson Lab has all 3 types of polarimeters and we have discussed the pros and cons of each polarimeter
- We are publishing a paper on the calibration of a Compton transmission polarimeter

Thank you for listening!

æ

문 문 문

Pockels cell's allow for rapid helicity reversal. Thus, 4 asymmetry states can be observed.

$$A = \frac{\sqrt{N_{l,d}N_{r,u}} - \sqrt{N_{l,u}N_{r,d}}}{\sqrt{N_{l,d}N_{r,u}} + \sqrt{N_{l,u}N_{r,d}}}$$
(1)

Greg Blume (ODU)

Qualifying Exam

October 30th, 2023 30 / 31

æ