SEE Lab Tests

(Musson et al.)

Standard JLAB SEE

Goubau Line X-Y Scanner

Conditions

MATLAB used to integrate scan and EPICS readback functions

```
SEE employs 12-bit ADC ..... ENOB = 11 (2048 counts)
```

SEE AGC maintains a 4-wire sum of 1100 counts (boresight ~ 300 cts/electrode)

Scan range = 1.5 cm x 1.5 cm, 250 um step size

EPICS-calculated as well as raw electrode counts retained

Difference-over-sum used, but EPICS auto-zeros low counts Fixed-gain mode also used, with hand optimization of dynamic range

Nominal RF level consistent with "1 uA" of beam current

SEE with M15 Sensor

Regression Output:

Plots for SEE using M15 sensor. Nominal beam current = 1uA Scan range: +/- 0.75 cm Scan resolution: 250 um SEE ADCs simply cut out (read 0) when signal is low SEE "minimum signal" is right at 100 nA.

Regression applied

Raw Data

SEE with Stripline Sensor (#22)

"Squelched" data piles up at edges and center in AG mode

Regression Output:

Plots for SEE using stripline (SPM). Nominal beam current = 1uA Scan range: +/- 0.75 cm Scan resolution: 250 um SEE ADCs simply cut out (read 0) when signal is low SEE "minimum signal" is right at 100 nA.

SPM:

Kx = 6.9 Ky = 8.8 D-theta = 7.3 degrees RMS error (1 cm) = 118.5 um

Accuracy maintained on-axis....

Regression applied

Raw Data

DR with M15 and Stripline Sensors

M15: 18.81 Stripline: 9.95

Stripline #22

M15

Electrical Sensitivities of M15 and Stripline Sensors

1100 counts are quickly eaten up.

Corners only have 550 cts.

Displacement, um

SEE vs DR Receiver Architecture

mm RI4

-250 +

OVR-105

All Htrs.

6.3V.

(ca. 1969)

Envelope Detection

Detection "locks in" the SNR......

Some tricks remain, but.....

SEE IF

- Fully Balanced Detector
- Output Temperature Compensated
- Improved Version of the MC1330

MAXIMUM RATINGS

Rating	Value	Unit
Power Supply Voitage	24	Vdc
DC Video Output Current DC AFT Output Current	5.0 2.0	mAdc
Junction Temperature	150	°C
Operating Ambient Temperature Range	0 to 75	°C
Storage Temperature Range	-65 to +150	°C

Figure 6. Output Voltage Transfer Function

140

Best-case DR = 25 dB

But, 1100 counts out of 2048 = 19 dB DR... Only 13 dB if in a corner.

...a Similar Example....

....ultimately, pre-detection will limit the system performance

Post-ADC detection

Options for filtering AND detection methods. All numerical....

We use CORDIC at JLAB

Figure 1. Platform for digital-IF receiver with CORDIC demodulator

BPM Electronics Block Diagram

Summary

SEE dynamic range is limited...Post-filtering might recover, but would be non-standard. Fixed-gain is advised.

For space constraints, might consider the JLAB "stubby" M15, which retains similar sensor electrical performance.

1 cm x 1cm is OK, with RMS accuracy error ~ 110 um. Careful steering (locks?) would be necessary.

"Stubby" JLAB M15 Scan

Kx = 15.46 Ky = 15.52

RMS(1cm) = 87.4 um Delta Theta = 0.041 degrees

