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Abstract
Polarized lepton beams are essential tools for the study of the internal structure and dynamics of

hadrons. In this quest, polarized positron beams are still very expensive to produce. In 2012, the
PEPPo collaboration succeeded in demonstrating a novel and widely accessible technique allowing for
the production of polarized positrons from polarized electrons of the order of a few MeV. During the
experiment, the polarization of the electrons and positrons were measured with a Compton transmission
polarimeter, which operation is based on the absorption of circularly polarized photons within a polarized
target. This internship proposes the design of a new polarimeter to be used at Jefferson Lab for the
measurement of the polarization of the electron beam at injector energies (5-10 MeV), as well as at the
Brookhaven National Laboratory in the characterization of a new polarized electron source.



Laboratoire de Physique des 2 Infinis Irène Joliot-Curie
The Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) is located on the campus of the
Faculty of Science in Orsay.

The lab was created on January 2020 from the association of five former insitutes: the Centre for
Nuclear and Material Sciences (CSNSM), the Laboratory for Neurobiology and Cancer Imaging and
Modelling (IMNC), the Institut de Physique Nucléaire d’Orsay (IPNO), the Linear Accelerator Labora-
tory (LAL) and the Theoretical Physics Laboratory (LPT).

The laboratory focuses its research on the physics of the two infinites. It comprises 1 engineering pole
and 7 research poles: Astroparticle - Astrophysics and Cosmology, Physics of Accelerators, High Energy
Physics, Nuclear Physics, Theoretical Physics, Energy and environment, Health Physics.

The laboratory is a mixed entity of the Centre National de la la Recherche Scientifique, the University
Paris-Saclay, and the University of Paris. A large part of its mission is also dedicated to teaching and
training of future researchers.

This internship took place within the High Energy Physics pole, in the JLab/EIC team.

Figure 1: Organization of the laboratory.
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1 Introduction
The study of the internal structure of hadrons allows a better understanding of the interactions be-
tween partons, that are the quarks and the gluons. Elastic electron scattering by the nucleon provides
information on the spatial distribution of quarks while inelastic scattering provides information on the
momentum distribution of partons. Generalized parton distributions (GPDs) are the elementary bricks
of a recent theoretical framework which unifies these distributions within a unique parameterization
deduced from the correlations of the parton position and momentum [1]. The current experimental pro-
gram in this research field aims at the first results on the shape of these multi-dimensional distributions.
The Deeply Virtual Compton Scattering (DVCS) is the simplest physics mechanism related to GPDs. It
corresponds to the scattering of an electron off a nucleon through the exchange of a virtual photon with
the re-emission of a real photon. Polarized beams of electrons and positrons are essential elements for
accessing GPDs through DVCS and other related processes [2].

Many of the physics experiments require an accurate knowledge of the polarization of the incident
beam. This is achieved with polarimeter devices such as a Mott polarimeter. For instance, Jefferson
Lab (JLab) uses a Mott Polarimeter operating at the CEBAF (Continuous Electron Beam Accelerator
Facility) injector at 5.5 MeV, and Compton polarimeters in the experimental halls operating at several
GeV beam energies. There is a need to develop new methods to measure the polarization of particles for
different energies using different physics processes in order to get redundant number of equipments for
a more precise determination of the polarization of the beam. A Compton transmission polarimeter [3]
was used in 2012 at JLab during the PEPPo experiment [4]. This polarimeter is based on the absorption
of circularly polarized photons within a polarized target, and is composed of three main elements: a
radiator, an analyzer, and a calorimeter.

This intership focuses on the design of a new Compton transmission polarimeter. The first part of
this report is dedicated to the description of the physics processes and the mechanism of the polarization
transfer. The second part concerns a rough theoretical modeling of the polarimeter while the third deals
with the optimization of the calorimeter and of the analyzer. Another part concerns the experimental
characterization of a BGO crystal, and the last part focuses on somes practical aspects of the operation
of the Compton transmission polarimeter in the context of planned experiments.

2 Polarization phenomena in electromagnetic processes
The experimental signal of a Compton transmission polarimeter is the energy deposited in a detector
by photons passing through an analyzer. These photons are initially generated in a radiator where
incident electrons develop an electromagnetic shower which consists of photons, electrons, and positrons.
Energetic electrons and positrons primarily emit photons according to the bremsstrahlung radiaton
process. The emitted photons interact with matter primarily converting into an e+e−-pair. These two
processes continue till the pair-production threshold (1.022 MeV), leading to a cascade of particles. This
paragraph focuses on electron- and photon-interactions with matter and the electron-to-photon transfer
of polarization during the bremsstrahlung interaction.

2.1 Electromagnetic processes
2.1.1 Bremsstrahlung radiation

When electrons hit a target, they are deflected by the electric field of the target’s nuclei. As a consequence,
the fast moving electron is decelerated in the Coulomb field of the nucleus. The kinetic energy lost by the
initial electron during the interaction is transformed into real photons. This phenomenon is referred in
the literature as the bremsstrahlung radiation [5]. In the full screening approximation, valid for electrons
with high total energy E and photon momenta k 6= E, the momentum differential cross section of this
phenomenon can be expressed as [5]

dσ

dk
=

4αr20
k

[(
4

3
− 4y

3
+ y2)

)[
Z2(Lrad − f) + ZL′rad

]
+

1

9
(1− y)

(
Z2 + Z

)]
(1)
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where α is the fine structure constant, r0 is the classical electron radius, and y=k/E. Lrad, L′rad and f
are Z-material dependent function defined as

Lrad ≡ Lrad(Z) = ln(184.15Z−1/3) (2)
L′rad ≡ L′rad(Z) = ln(1194Z−2/3) (3)

f ≡ f(Z) = 1.202Z − 1.0369Z2 +
1.008Z3

1 + Z
. (4)

Lrad and L′rad are the radiation logarithms for Thomas-Fermi-Moliere atoms [5] and f is the Coulomb
correction taking into account mechanisms beyond the one-photon exchange approximation. The brems-
strahlung photon spectra is a continuum in energy up to the kinetic energy of initial electrons. It is
dominated by the emission of very low energy photons, as illustrated on Fig. 2 for 10 MeV electrons
incident on copper.

Figure 2: Bremsstrahlung differential cross section for a 10 MeV electron beam incident on a copper
nucleus (Z=29); m denotes the electron mass.

2.1.2 Photo-electric effect

The photo-electric effect corresponds to the expulsion of atomic electrons by a photon interacting with
an atom. Following the particle wave duality of the light, this phenomenon can be seen equivalently as
a collision between a photon and a bound electron, or the resonant absorption of a wave by the atomic
electron which is then emitted by the atom. The cross section for this process has been parameterized
as [6]

σγe(Z, k) =
A1(Z, k)

k
+
A2(Z, k)

k2
+
A3(Z, k)

k3
+
A4(Z, k)

k4
(5)

where the index denotes the first four electronic layers of the atom. The constant coefficients are material-
and photon energy-dependent. This phenomenon discovered in 1887 by H. Hertz was ultimately explained
in 1905 by A. Einstein who received in 1921 the Nobel Prize in Physics for this founding work of quantum
physics.

2.1.3 Compton scattering

The Compton scattering corresponds to the collision of a photon with an electron: the photon bounces
off the electron and loses energy. This reaction was discovered in 1922 by A. Compton who received in
1927 the Nobel Prize for this discovery.
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Compton collisions can be considered as elastic collisions between photons and electrons. The photon
is not absorbed in the process. The photon that emerges after interaction, so-called scattered photon,
shares the initial energy with the moving electron. The scattered photon usually emerges in a different
direction from the incident photon and can even go backwards, corresponding to the Compton back-
scattering. The angular distribution of the scattered photons is described by the so-called Klein Nishina
formula representing the doubly differential cross section

d2σ0
C

dθdφ
=

1

2

(
r0
k

k0

)2[
k0
k

+
k

k0
− sin2(θ)

]
sin(θ) , (6)

where (θ, φ) are the spherical diffusion angles of the photon, and k0(k) is the energy of the initial(scattered)
photon expressed in units of the electron mass.

2.1.4 Pair Creation

The intense electric field surrounding the nucleus can transform an incident photon in an e+e−-pair. The
production of pairs in the γ+A reaction can only take place if the photons have enough energy to produce
at minima the pair at rest, that is larger than 1.022 MeV. This process is reciprocal to bremsstralhung
and is described by similar equations. Its cross section can be parameterized as [6]

σe+e−(Z, k) = Z(Z + 1)

[
F1(X) + F2(X)Z +

F3(X)

Z

]
(7)

where

F1(X) = a0 + a1X + a2X
2 + a3X

3 + a4X
4 + a5X

5 (8)
F2(X) = b0 + b1X + b2X

2 + b3X
3 + b4X

4 + b5X
5 (9)

F3(X) = c0 + c1X + c2X
2 + c3X

3 + c4X
4 + c5X

5 , (10)

with
X = ln

(
k

m

)
. (11)

The (ai, bi, ci) coefficients depend on the material where the conversion takes place.
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Figure 3: Interaction probability of photons with matter.

The probability of observing the photo-electric effect, the Compton scattering or the creation of an
e+e−-pair depends on the energy of the photon (Fig. 3). At low energy (a few keV), the most probable
interaction is the photo-electric process. In the MeV range, the Compton interaction dominates the
reaction mechanisms, while at higher energies the pair creation is essentially the only relevant interaction
mechanism.
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2.2 Electron-to-photon polarization transfer
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Figure 4: Polarization transfer during the bremsstrahlung interaction.

A Compton transmission polarimeter measures the polarization of an incident beam of electrons
through the absorption of polarized photons. In that respect, the key process is the conversion of the
incident beam into photons. During this conversion, the polarization state of the primary and created
particles change in such a way that part of the beam polarization is transferred to the bremsstrahlung
produced photon radiation. Circularly polarized photons are produced when a polarized electron beam
strikes a target. The efficiency of the polarization transfer depends on the energy and angle of the emitted
photon as well as the energy of the electron. In the forward angle limit [7], it can be written as

Pγ
/
Pe =

k

E

1 + 1
3

(
1− k

E

)
1− 2

3

(
1− k

E

)
+
(
1− k

E

)2 (12)

where Pγ is the circular polarization of photons, Pe is the longitudinal polarization component of electrons
and E is the kinetic energy of the electron beam. Consequently, the polarization spectra of photons is a
continuum in energy up to the polarization of initial electrons (Fig. 4).
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Figure 5: Average polarization transfer during bremsstrahlung interaction.

A more global characterization of the polarization transfer can be obtained from the convolution of
the polarization transfer efficiency with the energy dependence of the bremsstrahlung spectra. This can
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be expressed in the average polarization transfer

〈Pγ
/
Pe〉 =

∫ E−m

kth

dk
dσ

dk

Pγ
Pe

/∫ E−m

kth

dk
dσ

dk
(13)

where kth is a photon energy threshold which can be interpreted as the minimum photon energy to
generate an interaction with significant energy release, similar in effect to GEANT4 reaction thresholds.
The sensitivity of the average polarization transfer to the electron beam energy is shown in Fig. 5. In
this simple single-interaction approach, Compton transmission polarimetry appears most appropriate
for low energy electrons (< 5 MeV). However, this represents only a rough approximation since an
electromagnetic shower is the complex sum of many single interactions.

3 Compton transmission polarimetry and modeling

3.1 Principle of operation

Figure 6: Schematic of the analyzer and the calorimeter parts of a Compton transmission polarimeter.

The polarization sensitive part of a Compton transmission polarimeter can be restricted to the ab-
sorption of a photon beam by a polarized material (Fig. 6). While photons interact with matter according
to different physical processes, only Compton scattering is - for sake of simplicity - considered in the
following. Assuming mono-energetic photons, the probability transfer of a photon, that is the probability
for no interaction with the electrons of the analyzer, is described by the exponential law

ε±T (L) = exp[−(µ0 ± PγPtµ1)L] (14)

where Pt is the polarization of the analyzer electrons and the upper signs indicate the orientation of the
circular polarization of photons. µ0 and µ1 are the Compton attenuation coefficients defined as

µ0 ≡ µ0(k) = ρe

∫
dθdφ

d2σ0
C

dθφ
(15)

µ1 ≡ µ1(k) = ρe

∫
dθdφ

d2σ0
C

dθφ
A3(θ) (16)

where ρe is the electronic density of the analyzer, L is its length, and d2σ0C/dθφ is the unpolarized
Compton scattering cross section defined in Eq. (6).

A3(θ) =

[
k0
k
− k

k0

]
cos(θ)

/
k0
k

+
k

k0
− sin2(θ) (17)

is the analyzing power of the Compton scattering process, that is somehow the polarization efficiency of
the process which happens to be energy and angle dependent.
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Figure 7: Transmission efficiency of mono-energetic photons in iron.

Considering the numbers N+
γ =N−γ =N0 of initial photons, the total number of transmitted photons

defines the transmission efficiency of the polarimeter as the average of right and left circular transmitted
photons following the expression

ε0T (L) =
N+
γ ε

+
T (L) +N−γ ε

−
T (L)

N+
γ +N−γ

= exp (−µ0L) cosh(PγPt µ1L) , (18)

where the polarization sensitive part is generally well approximated by 1. Using Eq. (15) and Eq. (16), and
assuming Pγ=±1 and Pt=1 (note that for an iron analyzer sitting at the core of a magnet, the maximum
analyzer polarization is 0.08), the attenuation coefficients have been determined for different photon
energies via a numerical integration based on a trapezoidal method. The corresponding transmission
efficiency is represented in Fig. 7 for different photon energies as function of the analyzer length. At
a given length, high energy photons are more easily transmitted because of a smaller Compton cross
section.
Comparing the number of transmitted photons, the photon count asymmetry defines the experimental
asymmetry Am(L) as

Am(L) =
N+
γ ε

+
T (L)−N−γ ε−T (L)

N+
γ +N−γ

= tanh(−PγPt µ1L) . (19)

For |Pγ |=1 and Pt=1, this quantity represents the counting anlayzing power δγ(L) of the polarimeter
which can be interpreted as the polarimeter capability for measuring the polarization of photons. In
that case, the analyzer reveals the polarization of the incident beam from the asymmetry of the photon
count. It should be noted that this asymmetry does not depend on the linear attenuation coefficient µ0

but only on the polarization sensitive attenuation coefficient µ1. The photon energy dependence of the
analyzing power is represented on Fig. 8. Low photon energies supports higher analyzing power resulting
in a greater gap between polarized populations.
Eq. 19 further shows, that for a realistic iron analyzer, the asymmetry is essentially linearly proportional
to the photon polarization. Consequently, for a polarimeter of known length and a photon beam of known
energy, the photon polarization can be expressed as

Pγ =
Am(L)

Pt δγ(L)
. (20)

The statistical uncertainty on this measurement writes

δPγ =
[
2N0 P

2
t ε

0
T (L)δ2γ(L)

]− 1
2 =

[
2N0 P

2
t FoM

]− 1
2 (21)
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Figure 8: Counting analyzing power of mono-energetic photons in iron.

which defines the Figure-of-Merit (FoM) of the polarimeter as the product of the transmission efficiency
and of the square of the analyzing power. While the analyzing power increases with the analyzer length
and the transmission efficiency decreases with L, the FoM combines these two features in one single
parameter which optimum value ensures an optimum uncertainty. The FoM is then the parameter of
interest for an optimization of the performance of a polarimeter.

3.2 Extension to an electron beam

Figure 9: Schematic of the full Compton tranmission polarimeter.

The use of a Compton transmission polarimeter to measure the polarization of an electron beam
implies the transformation of the incident polarized electrons into circularly polarized photons. This is
achieved with a radiator where electrons convert into photons through the bremsstrahlung process. The
radiator configuration can also be part of the optimization procedure. However, in the final experimental
context, this radiator is assumed to be part of a water-cooled beam dump which purpose is to stop incident
electrons. The radiator is so optimized for electron absorption and not polarized photon production and
measurement. It is actually expected to be made of a 7 mm thick piece of copper.

In an attempt to predict the relative variation of the polarimeter performance, the transmission
efficiency and analyzing power should take into account the initial bremsstrahlung distribution of polar-
ized photons. The polarimeter performances can then be expressed as an average response weighted by
the bremsstrahlung cross section. Similarly to the average polarization transfer (Eq. (13)), the average
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Figure 10: Transmission efficiency of the polarimeter for mono-energetic electrons.

transmission efficiency for each helicity state (±) of the electron beam can be written

〈ε±T (L)〉 =

∫ E−m

kth

dk exp
[
−µ±(k)L

]dσ
dk

/∫ E−m

kth

dk
dσ

dk
(22)

where dσ/dk is the bremsstrahlung cross section defined in Eq. (1), and µ(k) is the linear attenuation
coefficient of copper defined as

µ±(k) = µγe(k) + µe+e− + µ0(k)± PePt
Pγ(k)

Pe
µ1(k) (23)

where all the relevant photon absorption processes have been considered. Assuming the same number
of incident electrons per helicity state (N+

e =N−e =Ne), the unpolarized average transmission efficiency is
defined according to

〈ε0T (L)〉 =
N+
e 〈ε+T (L)〉+N−e 〈ε−T (L)〉

N+
e +N−e

=
〈ε+T (L)〉+ 〈ε−T (L)〉

2
, (24)

and the corresponding count asymmetry writes

〈Am(L)〉 =
N+
e 〈ε+T (L)〉 −N−e 〈ε−T (L)〉

N+
e 〈ε+T (L)〉+N−e 〈ε−T (L)〉

=
〈ε+T (L)〉 − 〈ε−T (L)〉
〈ε+T (L)〉+ 〈ε−T (L)〉

. (25)

The sensitivity of these quantities to the analyzer length are represented in Fig. 10-11. The transmission
efficiency difference between 5 MeV and 10 MeV electrons turns out to be less significant than in the
case of mono-energetic photons. This is a consequence of the bremsstrahlung cross sections which favors
the production of low energy photons, and leads to lower transmission efficiencies at higher electron
beam energies. The count asymmetry is sensitive to the polarization of the incident beam through the
bremsstrahlung induced photon polarization. The sensitivity of the count asymmetry to the electron
energy is similar to the mono-energetic photon case: lower beam energies feature larger asymmetries.
Because of low energy photons in the bremsstrahlung distribution, electron asymmetries are smaller than
photon asymmetries at the same beam energy.

Alternatively, a photon energy asymmetry can also be defined following the expression

〈AEm(L)〉 =
N+
e 〈E+

T (L)〉 −N−e 〈E−T (L)〉
N+
e 〈E+

T (L)〉+N−e 〈E−T (L)〉
(26)
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Figure 11: Count asymmetry of the polarimeter for mono-energetic electrons.

Figure 12: Energy asymmetry of the polarimeter for mono-energetic electrons.

with

〈E±T (L)〉 =

∫ E−m

kth

dk exp
[
−µ±(k)L

]
k
dσ

dk

/∫ E−m

kth

dk
dσ

dk
(27)

which tends to improve the sensitivity to high energy photons where polarization effects are the most
significant. The sensitivity of this asymmetry to the analyzer length is shown in Fig. 12. It is remarkable
to notice that the energy asymmetry is much less sensitive than the count asymmetry to the initial beam
energy.

3.3 Measurement of an electron beam polarization
When the rate of detected events becomes too high to allow for an event-by-event operation, an integrated
approach is often chosen which provides an intensity signal directly proportional the population of initial
particles. In the present context, this information is obtained from the total energy deposited in the
crystal over a period of time (a bunch) where the helicity state of the initial beam and the orientation

11



of the analyzer polarization do not change. By changing the orientation of the polarization of the laser-
light at the photocathode for each bunch, the helicity state of the beam is reversed and an asymmetry
is measured in the polarimeter for each bunch pair.

Following previous sections, the response of the Compton transmission polarimeter is sensitive to a
certain average polarization of the photons, which is in turn proportional to the initial polarization of
the electrons. Experimentally, the calorimeter recovers the energy from the photons, and the measured
asymmetry can be expressed from the energy deposit as

Am =
E++ − E−+
E++ + E−+

=
E++ − E+−
E++ + E+−

(28)

where the upper signs denotes the helicity state of the beam and the lower ones represents the relative
orientation of the target polarization with respect to the electron beam helicity. Particularly, Eq. 28
indicates that the asymmetry can be measured either by reversing the beam helicity or the analyzer
polarization. This is of specific interest to search and correct for false asymmetries [8]. Considering the
helicity reversal case, the energy deposit per helicity state can be written

E± = N±e
∑
i

εi0 (1± PePtAei )Ei (29)

where the sum runs over the full range of photon energies detected in the calorimeter; N±e is the total
number of electrons per helicity state, εi0 is the unpolarized efficiency that is the probability for releasing
the energy Ei in the calorimeter from an electron, and Aei is the global analyzing power of the polarimeter
for a given electron beam releasing the energy Ei in the calorimeter. This latter quantity can be obtained
from calibration measurements using a beam of known polarization, or from the simulation of the response
of the full polarimeter. Assuming N+

e =N−e =Ne, the experimental asymmetry becomes

Am = PePt
∑
i

εi0A
e
iEi

/∑
i

εi0Ei = PePt
〈AeE〉
〈E〉

(30)

with

〈AeE〉 =
∑
i

εi0A
e
iEi

/∑
i

εi0 =
∑
i

εi0A
e
iEi

/
ε0 (31)

〈E〉 =
∑
i

εi0Ei

/
ε0 . (32)

The statistical uncertainty on this asymmetry originates from the statistical distribution of the number
of detected photons with a given energy Ei. In the case of small experimental asymmetries, it can be
expressed as

(δAm)
2

=
1

2ε0Ne

〈E2〉
〈E〉2

. (33)

For each bunch pair j, the electron beam polarization can be inferred according to

P je =
1

Pt

〈E〉
〈AeE〉

Ajm . (34)

The final polarization value is then expressed as an average over the total number Nb of bunch pairs
according to

Pe =
1

Nb

Nb∑
j=1

P je . (35)

Correspondingly, the statistical uncertainty on the measured polarization can be written as

δPe =

[
2ε0NbNeP

2
t

〈AeE〉2

〈E2〉

]− 1
2

=
[
2NbNeP

2
t FoM

]− 1
2 (36)

which, similarly to Eq. (21) defines the Figure-of-Merit of the polarimeter for electrons. The energy
range of interest in this study extends over the 5-10 MeV range, in accordance with available energies
at the CEBAF injector as well as the possibility of cross-calibration with respect to the existing Mott
polarimeter.
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4 Optimization of the polarimeter components

4.1 The GEANT4 framework
The GEANT4 software [9] was developed at CERN and uses the Monte-Carlo method to evaluate, among
others, the response of a detector. To operate a simulation, it is necessary to define the global context and
specific aspects of the study following the main items Geometry : choosing the geometry and materials
of what is to be simulated.
Physics list : defining the particles as well as the physical phenomena that will be taken during the
simulation.
Primary generator : choosing the characteristics of the incident particle beam, including its energy
and polarization.
Run action : initializing histograms and the Ntuples that will be filled during each event, as well as the
number of incident particles; over a run, none of these aspects can be changed.
Event action : filling histograms and the Ntuples of selected data; for example, during our simulation,
an event corresponds to an electron of the incident beam, and the energy deposited in the crystal is
recorded for each electron.
Stepping action : over the course of an event, calculations are done in steps, corresponding to the
lowest simulation scale; at each step, the kinetic energy, the time, and the polarization state of a particle
can be recorded.

4.2 Optimization of the calorimeter
The goal of the present study is the optimization of the size of a calorimeter detector intended to measure
the energy of incident photons. The Molière radius as well as the radiation length of a material are both
giving an idea of response of a crystal with respect to its dimensions: the Molière radius is defined as
the radius of a cylinder containing at least 90% of the energy deposited by an electromagnetic shower
developping within a material; the radiation length corresponds to the average distance necessary to
reduce the energy of an incoming electron by a factor larger than 1/e. For a BGO crystal, the Molière
radius is 2.3 cm and the radiation length is 1.1 cm.

4.2.1 BGO radius and length optimization

Figure 13: Calorimeter modeling within GEANT4.

The purpose of the calorimeter is to recover the energy of the incident photons. The initial choice
of BGO material is motivated by the actual availability of in-house crystals with dimensions: L=15 cm,
R=2.5 − 3.5 cm). The study then focuses on the amount of energy collected by a crystal for mono-
energetic photons. The evolution of the efficiency of the energy deposit, defined as

εD =
< EBGO >

Eγ
, (37)

is determined for different crystal sizes. In this expression, < EBGO > is the average energy deposit for
an initial photon population, numerous enough to ensure an accurate determination of εD.

The calorimeter is modeled within GEANT4 by a cylinder illuminated with a pencil-beam of mono-
kinetic photons impinging at its center (Fig. 13). A phantom detector surrounding all the active volume
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Figure 14: Energy deposit spectrum of 10 MeV photons in a BGO crystal (L,R)=(15, 3.5) cm.

of the crystal has been added to obtain information about the origin of eventual energy leakages. A
total number of 105 photons is sent for each size configuration, and the energy deposit is recorded in
an histogram. The spectrum in Fig. 14 is typical of the crystal response to γ-radiations. The photons
can interact through photo-electric, Compton or pair-creation processes. They can experience several
Compton scattering before releasing energy through photo-electric or pair creation effects: a continuous
spectrum until the retro-diffusion peak at 9.75 MeV is observed, followed by the total absorption peak
at the incident photon energy, here 10 MeV.

The analysis of the crystal radius simulations is reported on Fig. 15. From the Molière’s radius, we
expect to recover 90% of the energy of the incident photon for a 2.3 cm radius. Indeed, a somehow
universal saturation behaviour is observed which is reached at about 3.0 cm. However, it should be
noted that the saturation level depends on the crystal length. For too short a length, a significant
amount of the energy is lost in the forward direction. With increasing length, part of this energy is
recovered and the saturation level reaches larger values. For too short a radius, it can be noted that
lateral leaks become very significant. In such cases, the calorimeter recovers only a small part of the
incident beam. Because of the multiple Compton interactions, the energy leaks outside the crystal from
the sides. Similarly, the analysis of the crystal length simulations is reported on Fig. 16. Accordingly, the
combination (L,R)=(15, 3.5) cm allows to recover 90% of the energy of the incident beam. As expected
from the radiation length, we observe that the forward leaks become very significant for short crystal
lengths. Analogously to the previous observation, the saturation level depends on the crystal radius.

The complete mapping of the efficiency of the energy collection of the crystal is represented on Fig. 17
for a large range of length and radius. Defining an efficiency threshold at 95%, one can extract optimum
length and radius to operate a crystal with 10 MeV photons, for instance a minimum length of 18 cm for
a 3.5 cm radius. For comparison, the available crystals in-house have an efficiency about 91% and 93.78
for respectively 2.5 cm and 3.5 cm radii, that are below the selected threshold.

4.2.2 Influence of the photon energy

The study was conducted for a mono-energetic photon beam at the highest energy available at the
CEBAF injector. However, the radiator of the polarimeter will cause a distribution of the energy of the
photons (Fig. 2), and one has to ensure that a crystal optimized at 10 MeV still delivers an optimal
response at smaller energies. As a source of comparison, the same simulation protocol was carried out
for 5 MeV photons (Fig. 18). For long enough crystal, the general trend when reducing the initial energy
is an increase of the transverse size of the shower, which requires larger radius crystals: for a 18 cm
long crystal, we observe an increase of 0.3 cm in the radius corresponding to the same energy collection
efficiency. These effects are consistent with the Lorentz boost of shower particles from initial photons,
and remains small enough for our purposes. An appropriate strategy is then to optimize the radius with
respect to the most probable photon energies, and the length with respect to the highest energies.
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Figure 15: Optimization of the crystal radius for 10 MeV photons.
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Figure 16: Optimization of the crystal length for 10 MeV photons.
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Figure 17: Mapping of the efficiency of the energy collection of a BGO crystal for 10 MeV photons.
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Figure 18: Mapping of the efficiency of the energy collection of a BGO crystal for 5 MeV photons.
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Figure 19: Mapping of the efficiency of the energy collection of a CsI(Tl) crystal for 5 MeV photons.
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4.2.3 Influence of the crystal material

There exists different types of calorimeter crystals regarding the energy range of initial particles, the
light yield efficiency... The PEPPo experiment, operating a similar polarimeter, was using CsI(Tl) -
thallium-doped cesium iodide - crystals which properties differ from BGO ones (Tab. 1). In particular,
the Molière radius and the radiation length of CsI(Tl) crystals are larger than BGO’s, anticipating larger
sizes for similar energy collection efficiencies. The simulation protocol for CsI(Tl) was carried out at
5 MeV photons (Fig. 19). For a (L,R)=(15, 3.5) cm crystal, the CsI(Tl) collects 78% of the incident
beam energy while the BGO reaches 92%. In that volume/efficiency respect, the BGO is a much better
candidate. A more technical aspect concerns the decay time of the signal delivered by the crystal: BGO
crystals are faster and more adapted to the constraints of the data acquisition systems which deals with
1 µs time windows. BGO crystals are then favored for the present Compton transmission polarimeter.

Material Molière radius Radiation length Decay time
(cm) (cm) (ns)

CsI(Tl) 3.53 1.86 630
Bi4Ge3O12 2.26 1.12 300

Table 1: Physical properties of BGO and CsI(Tl) crystals.

4.3 Optimization of the analyzer
In order to optimize the analyzer, we simulate the entire Compton transmission polarimeter (Fig. 20).
The radiator is made out of copper to optimize the bremsstrahlung radiation rate and to allow easy
cooling implementation. We remind that the objective is to convert the incident electrons into photons,
so we aim a radiator acting as a dump for electrons. Furthermore, it is important to note that photons
are no longer mono-energetic, such that the relevant formalism of the polarization measurement is the
one presented in Sec. 3.3.

Figure 20: GEANT4 modelling of the polarimeter whch comprises: a copper radiator, an iron surrounded
by a copper coil, and a BGO calorimeter.

The thickness of the copper is 7 mm. This parameter is not part of the optimization, and appears
as an external constraint for compactness and operation of the apparatus. The simulation protocol
involves considering 10×106 electrons within a pencil beam configuration impinging at the center of the
radiator. To improve the determination of polarization effects, the initial beam polarization Pe and the
iron analyzer polarization Pt are set to 1. For each electron, the energy deposit in the crystal is recorded.
The number of photons created is like 7 for 1000 electons. Photons are emitted within a wide energy
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Figure 21: Photon spectrum at the exit of the radiator for 10x106 incident electrons of 10 MeV.

distribution as secondary particles resulting from the bremsstrahlung radiation of initial and secondary
electrons (Fig. 21). It should be stressed that very few photons with an energy equivalent to the incoming
beam energy are produced. The majority of photons have low energies. The purpose of the study is to
select an optimized length for the iron analyzer, suitable for operating in the 5-10 MeV energy range.
For a better determination of the calorimeter response, a copper coil is added around the analyzer, to
simulate the magnet coil that will polarize the electrons of the iron.

4.3.1 Transmission efficiency

The behaviour of the analyzer according to its length needs to be determined. Whenever one or several
photons are transmitted from a single initial electrons, the calorimeter signal is recorded. An event with
no energy deposit in the calorimeter corresponds to the full absorption of secondary particles before
reaching the crystal. On the opposite, an event with a non-zero energy deposit means that the photon
has passed through the iron entirely. We then compare N±γ with the number of initial electrons (20×106).
The efficiency ε0T , average over parallel and anti-parallel helicities of the electron is shown on Fig. 22.
For example, considering a 8.0 cm long analyzer, the transmission efficiency is 1.74% for 10 MeV primary
electrons and 0.62% for 5 MeV.

Figure 22: Analyzer length dependence of the helicity average transmission efficiency determined for
20×106 pencil-beam electrons.
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Simulation are in fair agreement with the rough theorical approach presented in Fig. 10, as far as the
relative variation with respect to the analyzer length. The transmission efficiency is higher for 10 MeV
than 5 MeV. Assuming a minimum efficiency of 0.1%, Fig. 22 suggests that the iron length should be
smaller than 10 cm. This single argument should however be weighted with the iron-length sensitivity
of the asymmetry.

4.3.2 Asymmetry

Figure 23: Analyzer length dependence of the experimental asymmetry determined for 20×106 pencil-
beam electrons and fully polarized beam and analyzer.

We calculate the asymmetry Am which is previously define in Eq. (28). For each length, the total
energy deposit for both electron helicity states (+ or -) state is determined, which corresponds respectively
to E+ and E−. Once again, simulations are in fair agreement with the single-step theoretical approach
(Fig. 12). The asymmetry increases with the length of the analyzer. Actually, the analyzing power of
iron analyzer is higher since the number of photons interacting with iron is higher. According to Fig. 23,
the asymmetry is maximum for a maximum length. However, at large lengths, the transmission efficiency
is too low: the calorimeter does not recover enough photons. It is therefore necessary to consider the
Figure-of-Merit to optimize the analyzer length.

4.3.3 Figure of merit

The FoM, defined in Eq. (36), combines the efficiency and asymmetry dependencies to hopefully allow
us to conclude on the optimal length of the iron analyzer. It is determined from simulations according
to the expression

FoM = ε0
〈E〉2

〈E2〉
[Am(Pe = 1, Pt = 1)]

2
= ε0

〈E〉2

〈E2〉
[
A11
m

]2
. (38)

The Fig. 24 shows the sensitivity of the product ε0
[
A11
m

]2 to the analyzer length. It exhibits similar
behaviour but different magnitude for 5 MeV and 10 MeV electrons. This is most-likely an effect of the
bremsstrahlung process which produces huge number of low energy photons in both cases. As expected,
it appears a maximum within the 5-10 cm length-region. Further simulations were performed in this
length domain with a statistics reaching up to 100×106. The corresponding results are shown in Fig. 25.
The optimized length of iron, corresponding to the maximum FoM finally turns out to be 8.0 cm.
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Figure 24: Analyzer length dependence of the reduced FoM determined for 20×106 pencil-beam electrons
and fully polarized beam and analyzer.

Figure 25: Analyzer length dependence of the FoM determined for 100×106 pencil-beam electrons and
fully polarized beam and analyzer.

5 Further considerations on the polarimeter operation

5.1 Radiation damage evaluation
Irradiation of scintillating crystals results in a dose-dependent reduction of the light-yield which conse-
quently affects the energy calibration and resolution of the crystals. According to Saint-Gobain, which
is one of the company providing crystals, BGO scintillation crystals are susceptible to radiation damage
starting at radiation doses between 1 and 10 Gray (102-103 rad). The effect is largely reversible with
time or annealing which is a very slow process.

The expected beam currents for the experiment are between 1 nA and 1 µA, with a bunch repetition
rate of 78 kHz. We use GEANT4 in order to simulate the energy deposit in the crystal and evaluate
the dose received. We send 10×106 electrons into the Compton transmission polarimeter and obtain
the energy deposit spectra in the crystal (Fig. 26). The effective dose D for 1 bunch at 1 µA is then
determined following the expression

D =
Energy (J)

Mass (kg)
. (39)

According to the simulation, the total energy deposited in the crystal is 60 GeV for 10×106 electrons.
At 1 µA, a single bunch comprises 160×106 electrons, corresponding to a total deposit of 960 GeV per
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bunch, that is 33.80 nGray with the current crystal geometry. Considering the beam repetition rate, the
dose deposited in the crystal would be 2.63 mGray per second. Assuming a 1 Gray limit, the operation
of the crystal would thus be limited to 2 mn, which is not sustainable for the experiment. A lower beam
current would improve this figures but not in a comfortable way. It is therefore necessary to adjust the
polarimeter design to allow for smaller dose exposure. A few solutions may be suggested:

• using doped BGO crystal to increase radiation hardness;

• reducing the number of gammas in the calorimeter (absorber, larger distance between the crystal
and the analyzer...).

These are expected to affect the transmission efficiency but not the analyzing power of the polarimeter.
As a matter of fact, the FoM will decrease while the analyzer length sensitivity (that is the current
optimization procedure) would be preserved.

Figure 26: Energy deposit (MeV) in BGO Crystal for 10×106 electrons at 10 MeV.

5.2 Duration of a measurement
Following Eq. (36), it is possible to evaluate the duration of a measurement assuming a specific beam
polarization and a desired statistical precision. For instance, the total number of electrons Nt required
to achieve a measurement with a certain relative uncertainty can be expressed as

Nt = 2NeNb =
1

P 2
t P

2
e

1

FoM

[
δPe
Pe

]−2
. (40)

Considering a low beam polarization Pe=10%, and a relative uncertainty of 1%, Tab. 2 gives the main

Ee ε0 〈E〉2/〈E2〉 Am FoM Nt ∆t
(MeV) (×10−2) (×10−5) (×10−4) (×1012) (mn)

5 0.62 0.484 1470 0.49 3.18 9.6
10 1.74 0.470 1382 2.55 0.61 1.6

Table 2: Some characteristics of the measurement of a 10% beam polarization with a 1% relative uncer-
tainty, at two different beam energies and an average beam current of 1 nA.

characteristics of a measurement considering an optimized polarimeter as determined in the previous
sections. Noting I the average beam current, the duration ∆t of a measurement is obtained as

∆t =
Nt e

I
(41)
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where e is the elementary electrical charge. The measurement time is reported in Tab. 2 for an average
current of 1 nA. While the beam polarization of the final experiment is unknown, the chosen example
of a small polarization together with a very good relative uncertainty can be considered as a worst-case
scenario. Even with such unfavorable conditions, the measurement time remains quite reasonable and
competitive.

6 Conclusion
Many fundamental physics experiments require an accurate knowledge of the polarization of the incident
beam. This is achieved with a polarimeter apparatus such as Mott or Compton scattering polarimeters.
The Compton transmission polarimeter is based on the absorption of circularly polarized photons within
a polarized target, and is composed of three main elements: a radiator, an analyzer, and a calorimeter.

The first part of the project was to optimize the geometry of the calorimeter, with respect to the
radius and the length of a BGO crystal. According to this study, an optimized BGO crystal would have
a 3.5 cm radius and a length larger than 18 cm. The second part of the project was to optimize the
length of the analyzer, optimizing the Figure of Merit. Accordingly, the optimized length of the analyzer
would be 8.0 cm for the energy range of interest. The third part of the project was an evaluation of the
radiation damage on the BGO crystal, with respect to the incident electron beam. Depending on the
exposure time and the characteristics of the beam in the final experiment at BNL, further studies are
required to control radiation damages.

The conceptual design represented on Fig. 27 has been obtained according to the optimization of
each components.

Figure 27: Conceptual design of the Compton transmission polarimeter.
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A Experimental characterization of a BGO crystal
The purpose of this study is the determination of the resolution of a candidate BGO crystal for high
energy muons originating from the cosmic radiation environment. Indeed, when a very high energy
particle arrives in the upper atmosphere, it collides with the nuclei of the atmosphere matter and produces
particles which in turn also interact, leading to a shower of particles. Among these secondary particles
are short-lived charged π-mesons which decay into µ±. On the one hand, the benefit of using high-energy
µ± is to expose the crystal to high energy deposits, inaccessible with conventional radioactive sources.
On the other hand, the experimental difficulty concerns the selection of these high-energy µ± and the
restriction of the length of the crossed crystal material which control the energy deposit.

A.1 Description of the experiment

Figure A.1: Experimental setup composed by a ligth-tigth box, a wavecatcher, a HV power supply and
a labtop

Figure A.2: Experimental arrangement of the BGO crystal and the PMT within a light-tigth box.

The experimental setup (Fig. A.1) consists of a ligth-tigth box, a wavecatcher, a HV power supply
and a labtop. The HV power supply delivers high voltage (1400V) to the PMTs of the BGO and the
scintillator. The wavecatcher is connected to the crystal and the labtop. It receives current and voltage
from the crystal and treat the data by wrinting it in binary language. The labtop provides us code in
order to decode the binary text. The ligth-tigth box consists of a BGO crystal, wrapped into a light
diffusive teflon envelope, and connected to a photomultiplier tube (PMT) through a silicon patch which
ensures the optical coupling. The assembly (Fig. A.2) is disposed inside a box which can be closed to
protect the PMT from direct light exposition. In order to restrict the passage of muons in the crystal
to a limited range of directions, a small scintillator read by a PMT is installed on top of the box. The
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coincidence between a scintillator and a crystal signal defines a good µ± event candidate. The coincidence
is searched within a minimum time duration (time width of the coincidence window) to ensure that the
same particle triggers both the scintillator and the crystal. Events are registered by the acquisition
system for each coincidence within the coincidence window. The data consists of the shape of the signal
over a duration of 1 µs, similarly to an oscilloscope. They are analyzed off-line to provide the spectra of
the energy deposit in the crystal. The full experimental setup comprises:

• a BGO crystal, R=3.5 cm and L=15 cm;

• a desktop High-Voltage (HV) power supply DT1470ET;

• a R2154 Hammatsu PMT;

• a wavecatcher data acquisition system;

• a thin scintillator coupled to its PMT;

• HV and signal cables;

• a light-tight box;

• a portable labtop to control the different systems, register data, and ultimately analyze them.

A.2 Crystal signal analysis

Figure A.3: Examples of the different signals registered by the wave-catcher: appropriate BGO signal
(upper left panel); partially saturated signal (upper right panel); pile-up (lower left panel); electronics
oscillation (lower right panel).

When a muon hit the BGO crystal, we observe a typical BGO signal (Fig. A.3 upper left panel) with
an exponential decrease of the signal amplitude. In order to put in an automatic analysis of the crystal
signals, we define the following set of parameters:
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• t0, the starting time of the signal;

• tmax, the time stamp of the maximum signal amplitude;

• tmin, the time stamp of the minimum signal amplitude;

• tr=tmax-t0, the rising time of the signal;

• τ , the constant decay time of the signal;

• Amax, the maximum signal amplitude;

• Amin, the minimum signal amplitude;

• SA, the signal amplitude integrated over its duration;

• S0, the local zero signal which may fluctuate between signals.

The decay time τ of the BGO crystal is obtained from the fit of the signal starting at tmax. The fitting
function is defined as

f(p0, p1, p2, t) = p2 + p0e
p1t (42)

where (p0, p1, p2) are deduced from the fit with τ=−1/p1. Such automatic analysis of the data assumes
that a relevant and ideal signal shape. It is therefore necessary to ensure that the signal parameters are
all within an acceptable range of values to make sure of the selection of appropriate signals. Different
signal types have been observed which can be classified using the previously defined parameters:

- saturated signal : if the muon have too many energy, we observe a saturation for the amplitude of
the signal due to the electronic stuff. As a consequence, we can’t fit this signal. If we find Amax
several times for one signal, then the signal is rejected.

- pile-up signal : This event corresponds to the detection of two muons during the data acquisition.
It’s a super rare event (0.1%). It means that two muons are getting through the scintillator and
hit the crystal during the window time. We first obtain Amax of the signal. If we find in the signal
an amplitude superior to 0.5Amax and far from the bin of Amax, the signal is rejected.

- electronics background signal : The last signal is due to the electronics of the experiment. We
obtain S0 of the signal. If Amin is negative and superior to 10S0, then the signal is rejected.

After this treatment of data, we manage to keep only good signals, and obtain the set of histograms
shown in Fig. A.4.

A.3 Determination of the crystal resolution
Following the previous analysis, only appropriate signals are kept for the determination of the crystal
resolution. The signal integral distribution of selected events is shown in Fig. A.5. Considering our
experimental setup, the observed distribution results from the convoluted effects of several contributions:

- the intrinsic energy resolution specific to the BGO crystal;

- the fact that the experimental configuration allows a variation of the path length (that is the energy
deposit) of cosmic rays inside the crystals;

- the fact that cosmic rays have an intrinsic distribution in energy and angle.

Each contribution have to be modeled in order to fit the histogram. The resolution effects are represented
by a Gaussian distribution while the cosmic ray related effects are better represented by a Crystall ball
function. The final fit function is a sum of these functions and an exponential function, according to the
expression (43).
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Figure A.4: Distribution of the signal parameters for coincidence cosmic events.
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Figure A.5: Fit of the experimental signal with a Crystal ball and Gauss functions.

SA(x, a, µ, σ, α, , n, σ1) = e−ax +

[
n

| α |

]n [
n

| α |
− | α | −x− µ

σ1

]−n
exp

(
−| α |

2

2

)
+

1√
2π

exp

(
− (x− µ)2

2σ2

)
(43)

The fit of the experimental distribution is shown in Fig. A.5, which represents the fit of SA between
600-2000 nC. The resolution Γ of the BGO crystal is obtained from the expression

Γ =
σ

µ
(44)

where, µ is the mean of the Crystal ball function, and σ is the standard deviation of the Gaussian
distribution. From the fit in Fig. A.5, the resolution of the crystal is 7.8%. Next steps would be to
calibrate the wave-catcher with radioactive sources, in order to match the charge with the energy of the
particle, and to better restrict the path of muons inside the crystal.

A.4 Muons energy and track length in GEANT4
We implemented in GEANT4 the geometry of the experiment in order to get the trajectory of muons
inside the crystal and the energy deposited. From the positions of the muon impact points with the
scintillator and with the crystal, we can obtain the track length by muons passing through the BGO
crystal. The geometry of the simulated experiment is shown in Fig. A.6.

We can have an idea of the track length of the muons through the energy loss by muons in BGO such
as :

−1

ρ

dE

dx
= 1.251 MeV · cm2 · g−1 (45)

which finally give

−dE
dx

= 8.92 MeV · cm−1 (46)

We obtain the following histograms (Fig. A.7) according to the GEANT4 simulations. The first two
histograms of the (Fig. A.7) represent the energy and the angle of the muons beam generated. The third
histogram represents the total energy deposit in the crystal by muons. The last one is the track length
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of the muons in the crystal. The number of events of the histograms fall from 100.000 to 19.762 because
we keep only muons that hit the scintillator and the crystal. The average energy deposit in the crystal
is 59.13 MeV and the track lenght is 7.2 cm. We can quote the track length is superior to the diameter
of the BGO crystal (7 cm). Actually, the muon can hit the scintillator not perpendicularly to the crystal
which lead to a track length higher than the diameter of the crystal.

Figure A.6: Geometry implemented in GEANT4.
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Figure A.7: Track Length and deposit energy of muons in BGO crystal.
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