
 

Beam exchange of a circulator cooler ring with an ultrafast harmonic kicker
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In this paper, we describe a harmonic kicker system used in the beam exchange scheme for the
circulator cooling ring (CCR) of the Jefferson Lab Electron-Ion Collider. By delivering an ultrafast
deflecting kick, a kicker directs electron bunches selectively in/out of the CCR without degrading
the beam dynamics of the CCR optimized for ion-beam cooling. We will discuss the design principle of the
kicker system and demonstrate its performance with various numerical simulations. In particular, the
degrading effects of realistic harmonic kicks on the beam dynamics, such as 3D kick field profiles
interacting with the magnetized beam, are studied in detail with a scheme that keeps the cooling efficiency
within allowable limits.
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I. INTRODUCTION

A proposal [1] for the Jefferson Laboratory Electron-Ion
Collider (JLEIC) includes the circulator cooling ring
(CCR), which can dramatically increase luminosity of
the electron-ion collision at a 45 GeV center-of-mass
energy by cooling the ion beam in a storage ring at an
energy of up to 100 GeV=nucleon. The cooling is done by
passing the ion beam through a series of cooling solenoid
channels—located in an overlapping segment of the CCR
and the ion storage ring—along with a comoving electron
beam [see Fig. 1(a)], whose beam parameters are dictated
mostly by the ion beam parameters and listed in Table I [2].
In order to deliver an electron beam current of 0.76 A at a
bunch repetition rate of fb ¼ 476.3 MHz to the cooling
channels while taking into account the technological
limitation on the injection current from the gun (whose
state of the art limit is ∼75 mA), the CCR is designed to
increase the current in the cooler by causing the electron
bunches to recirculate in the ring for 11 turns. The
schematic layout of the CCR complex and the exchange
region with a kicker system is shown in Fig. 1. In Fig. 1(a),
the electron beam from a magnetized rf gun at 43.3 MHz
gets accelerated by the energy recovery linac (ERL) to a
nominal 55 MeV energy and enters the exchange region
(gray strip) to be transferred to the upper level. On the
upper level, the electron beam joins the CCR populated
with the recirculating beam at 476.3 MHz and circulates in
the ring for 11 turns before exiting through the exchange

region and going back to the ERL, and eventually to the
beam dump. In a closer look at the exchange region
illustrated in Fig. 1(b), an injected bunch follows the
purple dashed line that goes through a prekicker cavity
(PREK), gets bent toward the upper level by a large-angle
deflecting magnet (VDD), and bent back level via a septum
(S) magnet. It is then kicked down by an injection kicker
(IK) to merge with the CCR beam (the gray dashed line),
and then kicked up (together with the recirculating
bunches) by a dc kicker magnet (DCK) to start circulation.
During the recirculation, the bunches in the exchange
region avoid the influence of the septum by following
the path of the gray dashed line created by a series of
magnets—a DCK, a pair of focusing magnets, and another
DCK. During recirculation, the bunches do not experience
kicks due to phase mismatch of the harmonic modes of the
kick. After 11 passes, an extracted bunch follows the red
dashed line: after the DCK magnet, it gets kicked down by
an extraction kicker (EK), gets transferred down to the ERL
ring via the septum magnet and another large-angle
deflecting magnet (VRD), and goes through a postkicker
(PSTK) cavity before returning to the ERL.
According to the proposed beam exchange scheme [1],

every 11th bunch at the injection/extraction points in the
CCR must be injected/extracted into/out of the ring at a
kick frequency of fk ¼ 43.3 MHz—The ion beam bunch
frequency will double to 952.6 MHz in a future upgrade,
leading to the doubled exchange/CCR bunch frequencies of
the electron beam. The design of the kicker system was
based on fk ¼ 86.6 MHz as a preparation for this upgrade.
Such an exchange scheme would need an ultrafast kicker
system that selectively delivers a deflecting kick of 2.5 mrad
angle to the exchanged bunches only. This implies the rise-
fall time of the kick must be much smaller than the bunch
spacing of 1=fb ¼ 2.1 ns. The most promising candidate
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for a fast kicker is a harmonic kicker based on a quarter wave
resonator (QWR) whose kick profile is made of a linear
combination of rf harmonic modes so that it has a sharply
peaked temporal profile around an exchanged bunch.
In a CCR, a magnetized beam has some advantages over

a nonmagnetized beam, including a strong suppression of
the CSR microbunching/energy spread growth [3] and
stronger cooling [4]. For a high-energy electron beam,
the transverse velocity spread in the beam frame is enlarged
by the Lorentz factor, and hence the transverse temperature
is usually much higher than the longitudinal velocity. For a
strongly magnetized electron beam, the Larmor radius is
much smaller than the impact factor. The ions interact with
the Larmor circles instead of the free electron. The cooling
time is mainly determined by the longitudinal temperature
of the electrons and a stronger cooling, i.e., a shorter
cooling time, can be achieved [5–7]. To maintain a constant
electron bunch size in the solenoid, the beta function is
determined by the momentum of the electron and the
magnetic field. In the JLEIC configuration, the beta
function of the electron beam is much smaller than the
beta function of the ion beam. To make sure the electron
beam size matches the ion beam size, the emittance of an
unmagnetized electron beam will have to be very large,
which leads to very high temperature and lowers the
cooling rate. But for a magnetized electron beam, the
beam size is determined by the drift emittance, while
the cooling rate is determined by the Larmor emittance.
We could simultaneously achieve a large drift emittance to
match the beam size and a small Larmor emittance to obtain
a good cooling rate [8]. A round magnetized beam within
the cooling solenoid can be achieved by generating a round
magnetized beam at a photocathode gun immersed in a
solenoid and propagating it through a rotationally invariant
and “decoupled” beam line to the cooler, as first conceived
in Ref. [9] and later adopted in the CCR design with an
extension of the scheme to the entire CCR (i.e., to come

back to the cooler after circulation) [1]. At the start and end
point of a globally invariant beam line, the beam has the
same canonical angular momentum (CAM) and conse-
quently roundness of the beam is preserved. If the beam
line is decoupled as well, then the Larmor (rotational)
motion of the beam is decoupled from the drift (Larmor
center) motion, implying the Larmor emittance as a
measure of the Larmor motion of the beam is conserved.
The lattice design of an optimized beam line in a CCR
without kickers can be found in Ref. [10].
In this paper, we describe design of a harmonic kicker

system and demonstrate by numerical simulations that the
optimized beam dynamics of the CCR for the maximum
cooling efficiency can be maintained (within tolerance
limits) after a harmonic kicker system is implemented.
The basic ideas in the design of a harmonic kicker
presented here are not new. The first prototype of a
harmonic kicker was developed in the work of Huang
et al. [11,12] for different beam dynamics of the CCR. In
Ref. [11], a linear combination of ten harmonic modes,
distributed over three different cavities, was designed as a
kick profile, the idea of using two kickers, IK and EK, with
an intervening betatron phase advance of π to cancel out the
residual fields of the kick for the recirculating bunches was
conceived, and pre/post kickers (PRK/POKs) were intro-
duced to flatten the rf curvature of harmonic kick on the
exchanged bunches, preventing longitudinal profiles of
angular distribution from bending into a “banana” shape.
Subsequently these ideas were demonstrated by the
numerical simulation studies using the particle tracking
code ELEGANT [13] based on a simple model of the kick
fields, where the only nontrivial component of the kick is in
the kick direction with the spatial profile being transversely
uniform and longitudinally δ functionlike or “impulsive”,
i.e., F⃗L ¼ eVkðtÞδðzÞx̂ (F⃗L is the Lorentz force as a kick
acting on an electron, e is an electron charge, Vk is a kick
voltage, x̂ is the kick direction—regardless of any physical
direction and might be vertical—and z is a longitudinal
coordinate with the origin at the cavity center). The analysis
of the beam propagation in Ref. [11] was limited to a
nonmagnetized beam. The current work is an adaptation of
the aforementioned basic approach to a beam dynamics
with updated parameters (see Table I) of the CCR, with
improvement on the number of modes for the kick profile to
the five modes within a single cavity [14]. Furthermore, a
kick model is now generalized to resemble the realistic kick
field of the kicker cavity. The 3D field map of the QWR can
be obtained from the rf simulations [15] using the 3D FEA

code CST-MWS [16], although its direct application to
analysis is impractical—not applicable in the ELEGANT—
and therefore the kick model that appropriately approx-
imates the profile needs to be introduced. In contract to the
aforementioned simple kick model, the realistic kick fields
are not transversely uniform, nor are they impulsive.
Through the transversely nonuniform fields, the electrons

FIG. 1. The schematic view of the CCR. (a) Overview of the
CCR. The grey colored box is the beam exchange region. (b) The
expanded view of the exchange region.
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at different offsets see different kick voltages, leading to
serious degradation of beam dynamics since the cancella-
tion scheme is not effective anymore. As long as the beam
trajectory remains flat, i.e., at zero slope, throughout the
effective range of the kick fields, a phase space transform
with nonzero offsets can be systematically described by a
multipole expansion of the rf fields near the beam axis
analogous to expansions of static magnet fields, as was first
done in Refs. [17–19]. Then, the multipole fields can be
implemented into ELEGANT as beam line elements. We will
present a modified configuration of a kicker system that
cancels the multipole contributions in the residual kicks, as
demonstrated by the ELEGANT simulations. On the other
hand, the longitudinally extended profile of the kick fields,
which closely resembles the pseudo Gaussian profiles,
allows the offsets of the beam to evolve over the effective
field range. This evolution becomes more evident with the
magnetized beam whose CAM defines nontrivial transverse
slopes. Moreover, this evolution cannot be canceled by any
cancellation scheme. We will show that the accumulated
offset evolution reduces the magnetization and increases
the Larmor emittance of the beam, leading to decreased the
cooling efficiency. In the ELEGANT simulation, the extended
kick profile is modeled as a series of impulsive kicks over

the effective field range and the resulting Larmor emittance
increase is shown to be smaller than 19 mm mrad, the
tolerance limit for the efficient cooling.

II. THE BASELINE DESIGN OF A HARMONIC
KICKER SYSTEM

In this section, the baseline design of a harmonic kicker
system is presented based on a simplified model of the
CCR beam dynamics: the nonmagnetized electron beam
with a simple kick model. First, we present the design
principle of the kicker that leads to the implementation of
the aforementioned ideas in a single cavity with five
harmonic modes. Then, a few important beam parameters
are analytically computed and finally a proof of principle
using the ELEGANT simulations is demonstrated. The beam
dynamics based on a more realistic kick model will be
discussed in the following sections.

A. Harmonic kick design

The schematic view of the kicks on electron bunches in
the injection scheme (the extraction scheme is analogous) is
shown in Fig. 2. The injected bunch train at fk ¼
43.3 MHz merges with the recirculating bunches at fb ¼
476.3 MHz via a vertically deflecting kick at the cross-
point. The Nb ¼ 11 bunches pass through the kicker in a
single kick period 1=fk. Each bunch is indexed by
m ¼ 0; 1;…; 10. When m ¼ 0 is the injected bunch and
the others (m ≠ 0) are recirculating bunches. All the
particles within the bunches are assumed to move at v⃗ ¼
cẑ (c is the speed of light). Given beam parameters from
Table I, simple trigonometry in Fig. 2 gives a good estimate
for a kick voltage with Pkick ≈ θP ≈ 137.5 keV=c for the
given kick angle of θ ∼ 2.5 mrad. Furthermore, the kick
must be applied on the electron bunches selectively, i.e.,
delivered on injected bunches only at kick frequency fk and
not affect beam dynamics of the recirculating bunches. This
requires a temporal profile of a kick to be sharply peaked at
kick frequency fk and drop to negligible value within
tb ¼ 1=fb ¼ 2.1 ns.
The required profile can be achieved using a harmonic

kick, which is defined as a linear combination of harmonic
modes with base frequency fk. First, to define the relevant

TABLE I. Beam parameters of the CCR at the kicker and at
the photocathode gun. The Twiss parameters are at the kickers.
The value in the bracket for the Lamor emittance refers to the
tolerance limit.

Parameters Unit Magnetized beam

Beam energy E MeV 20–55
Bunch frequency fb MHz 476.3
Bunch charge Qb nC 1.6
Kick frequency fk MHz 86.6
Kick angle θ mrad 2.5
Bunch distr⊥ � � � Uniform-ellipse
Bunch distrk � � � Top-hat
Bunch length l cm 3
rms energy spread δE=E ×10−4 3
Effective emittance (hor) εeff;x mm mrad 36
Effective emittance (vert) εeff;y mm mrad 36
Drift emittance εdrift mm mrad 36
Larmor emittance εLarmor mm mrad 1(19)
Twiss parameter (hor) βx m 10
Twiss parameter (hor) αx � � � 0
Twiss parameter (vert) βy m 120
Twiss parameter (vert) αy � � � 0
Magnetization M mm mrad 35
Gun frequency fg MHz 43.3
Gun voltage Vg kV 400
Cathode spot radius σcath mm 2.2
Cathode magnetic field Bcath T 0.1
Cooler solenoid field Bcool T 1
Beam spot radius σcool mm 0.7
Electron beta at the cooler cm 36

 43.3 MHz

Injection 
transport

the CCR

~ 2.5 mrad

 P=55 MeV/c

 Pkick=137.5 keV/c

Harmonic kick

 476.3 MHz

FIG. 2. A schematic view of the kicker. The black arrowed line
is injection transport, while the yellow line is the CCR. The kick
is represented by a big red downward arrow. The yellow ellipses
are injected bunches, while the green ellipse is a recirculating
bunch in the CCR. The dotted transparent ellipse is an empty
bucket reserved for the upgrade.
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quantities more precisely, the coordinate system, which we
will use, is set up as follows. The longitudinal coordinate
along the beam line is denoted by either s or z and the
transverse coordinates by x (vertical) and y (horizontal),
respectively. The origin s ¼ 0 is at the cavity center. The time
the reference particle in the mth bunch arrives at the cavity
center is set to be t ¼ m=fb. Consider a generic charged
particle in the mth bunch that arrives at the cavity center at
t ¼ m=fb þ τ, the trajectory is zðtÞ ¼ cðt −m=fb − τÞ. The
fractional energy of the particle is δ ¼ E=Er − 1, withE and
Er being the energy of the particle and the reference particle,
respectively.Next,we assume the simple kickmodel used for
the baseline design, i.e., F⃗L ¼ eVkδðzÞx̂. Then, the relevant
equation of motion for the particle is given by

dpx

dt
¼ Fxðz; tÞ ¼

XN
n¼0

Re½eVnδðzÞe−iðωntþϕnÞ�; ð1Þ

while dynamics in y direction is trivial. In the second
equality, the Lorentz force is given as a harmonic kick,
i.e., a linear combination of N harmonic modes (plus one dc
mode) with each mode written as the product of the spatial
(longitudinal) profile VnδðzÞ and the temporal (harmonic)
profile. Also ωn (n > 0, with ω0 ¼ 0) and N are the angular
frequency of the nth mode and the number of harmonic
modes, respectively. The rf phase ϕn of the kicker is chosen
so that the kick reaches the peak value at t ¼ 0 (on-crest
phase), i.e., ϕn ¼ 0 for all n ≥ 0. Changing the independent
variable from t to s and integrate the kick field over the cavity
length, the kick voltage delivered by a harmonic kick is
given as

Vx

�
m
fb

þ τ

�
¼ V0

þ
XN
n¼1

Vn cos

�
2πð2n − 1Þfk

�
m
fb

þ τ

��
;

ð2Þ

where n ¼ 0 refers to the static mode provided by the
external dc magnet. Now let us apply the general formula (2)
to the requirements for the harmonic kickers. Whenever a
reference particle in each exchanged bunch arrives at the
kicker cavity, i.e., τ ¼ 0 and m ¼ 0, the kick must deliver a
kick voltage Vkick:

Vxð0Þ ¼ V0 þ
XN
n¼1

Vn ¼ Vkick ¼ 137.5 kV: ð3Þ

In Eq. (2), a set of constraints arises from the practical
implementation of the kicker. In practice, a physical kicker
cavity can accommodate only a few modes because of the
kicker’s power-to-deflecting voltage efficiency and rf wave
controlling issues. Thus, N must be truncated at a number

less than 10. In case a harmonic kicker is based on the
QWR, only odd harmonics appears in Eq. (2) with ωn ¼
2πð2n − 1Þfk because all the resonant frequencies sup-
ported by the QWR that has a coaxial structure with its
closed end electrically shorted are odd harmonics. With the
superposition of a few modes, the temporal profile of the
kick would inevitably have “ripples”, i.e., nonzero residual
kicks on the recirculating bunches between the kicks [for
example, see Fig. 3(a)]. These residual kicks could degrade
the beam quality and should be minimized. More precisely,
the kick should be close to zero with its slope also close to
zero at temporal location of each recirculating bunch. From
Eq. (2), we must have for mth recirculating bunch
(m ¼ 1; 2;…; Nb − 1)

Vx

�
m
fb

�
¼ V0 þ

XN
n¼1

Vn cosf2πð2n − 1Þfkm=fbg ¼ 0:

ð4Þ

For stability of the kick with respect to arrival time (to
the kicker) jitter, rf control errors, and the extent over the
bunch length, the kick voltage slope must be close to zero
as well,

V 0
x

�
m
fb

�
¼ −

XN
n¼1

Vn2πð2n − 1Þfk

× sinf2πð2n − 1Þfkm=fbg ¼ 0: ð5Þ

Note that the constraints defined in Eqs. (4) and (5) are
not all independent due to the symmetry of trigonometric
functions:

cos

�
2πð2n − 1Þmfk

fb

�
¼ cos

�
2πð2n − 1ÞðNb −mÞ fk

fb

�
;

ð6Þ

sin

�
2πð2n − 1Þmfk

fb

�
¼ − sin

�
2πð2n − 1ÞðNb −mÞ fk

fb

�
:

ð7Þ

This reduces the number of the constraints in Eqs. (4)
and (5) to ðNb − 1Þ=2 ðNb=2Þ for odd (even) Nb, i.e., the
range of m can reduce to m ¼ 1;…; 5 for Nb ¼ 11. The
total number of the constraints that includes the kick
condition (3) is then 11. On the other hand, the effect of
small residual kicks and their slopes on the recirculating
bunches can be minimized if a pair of the kickers is
implemented into the CCR, i.e., one kicker (called IK) for
injection and the other kicker (called EK) for extraction as
first introduced in Ref. [11] (see Fig. 1). In this two-kicker
system, the relative rf phase between the two kickers are set

PARK, GUO, RIMMER, WANG, and WANG PHYS. REV. ACCEL. BEAMS 24, 061002 (2021)

061002-4



to zero so that the momentum changes due to the kickers
are the same—with an impulsive kick model, offset
changes are all zero. Moreover, the kickers are separated
by a betatron phase advance of π, so the phase space
variables transform as x → −x; x0 → −x0. Then, a straight-
forward computation of the overall momentum change
shows that the residual extraction kick is canceled by the
corresponding injection kick and the beam dynamics
requirements (5) is satisfied via the two-kicker system
without having to be imposed on the individual kicker. This
leaves only the requirements (3) and (4) relevant for profile
construction with the total number of constraints reduced to
six. A system of requirements (3) and (4) becomes critically

determined with the nonzero dc mode and only five odd
harmonic modes (n ¼ 1;…; 5), which can be easily
accommodated in a single QWR. The constraint (4) can
be written as a 5 × 5matrix equation for the kicker voltages
Vn with n ¼ 1;…; 5

V01þMV ¼ 0;

where 1¼

2
64
1

..

.

1

3
75; V ¼

2
64
V1

..

.

V5

3
75; 0¼

2
64
0

..

.

0

3
75; ð8Þ

M ¼ ½Mmn �; Mmn ¼ cosf2πnfkm=fb þ ϕng; ð9Þ

where the explicit computation of the rank of M shows the
matrix is nonsingular. By solving Eq. (8) for V with the
inverse of M, we have Vn ¼ 2V0 for n ¼ 1;…; 5, and
combining with the constraint (3), we obtain equal ampli-
tude solutions, i.e., Vn ¼ 25 kV and V0 ¼ 12.5 kV (see
Table II). The corresponding temporal profile is shown in
Fig. 3(a).
Finally, we extend beam dynamics requirements on the

kicker scheme—as determined by (3), (4), and (5) with
respect to a reference particle—to the bunches. In particular
with an exchanged bunch, the kick voltage in (2) gained by
a particle lagging the reference particle behind by Δt ¼ τ
would be less than Vkick by a factor of CRFðτÞ ¼P

n Vn cosωnτ=Vkick, which is called the rf curvature term
and shown in Fig. 3(b). Consequently, the temporal profile
of harmonic kick around the reference particle will be
“imprinted” on the (vertical) angular distribution of the
bunch over the bunch length, leading to a banana-shaped
profile. This will result in a significant increase in the
vertical normalized emittance and a reduction of the
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FIG. 3. The profiles of the designed kicks. (a) The temporal
profile of a harmonic kick. The red dots correspond to electron
bunches arrriving at the kicker every 2.1 ns. While the kick
frequency is 86.6 MHz, the electron bunch in current scheme is
injected into the CCR at a frequency of 43.3 MHz. We have
introduced a DC kick to uniformly reduce the residual kicks to
zero. (b) The temporal profile of kick after addition of
pre/post ick.

TABLE II. Figures of merit for a harmonic kicker cavity. The
middle box is for the harmonic kicker and the bottom box is for
the pre/post kicker. nh is harmonic number, f is frequency, V is
kick voltage amplitude, and ϕ is rf phase. Pwall is wall loss, Q0 is
unloaded quality factor, and Rsh;⊥ is the transverse shunt
impedance of the harmonic kicker. dch and dcp refer to dc
magnet field associated with harmonic kicker and pre/post kicker
and kick voltage translates to 0.1 and 0.3 mT for a 0.4 m long
magnet, respectively.

Modes f (MHz) V (kV) ϕ (rad) Pwall (kW) Q0 Rsh;⊥ (MΩ)

1 86.6 25 0 0.43 5785 1.44
2 259.8 25 0 0.80 10026 0.78
3 433 25 0 1.42 13043 0.44
4 606.2 25 0 1.22 15540 0.51
5 779.4 25 0 2.54 17452 0.24
0 dch 12.5 � � � � � � � � � � � �
Total � � � 137.5 � � � 6.4 � � � � � �
0 dcp 38.1 � � � � � � � � � � � �
11 952.6 38.1 0
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cooling rate. Moreover, the imprinted curvature at the first
entry will persists through the cancellation scheme over the
passes. To remove the curvature, a prekicker whose own rf
curvature is designed to flatten the total curvature is
introduced before the IK. Similarly, in the case where
the normalized emittance of the beam must be maintained
small in the ERL, a postkicker can be introduced in an
extraction transport after the EK. A pre/post kicks are
single frequency kickers designed so that the rf curvature
effects of the injection/extraction kick are largely compen-
sated as follows. Given that the betatron phase advance
between the PRK/POK and the harmonic kicker is set to be
π, the total kick V tot as a combination of harmonic kick
and pre/post kick (which is identified as sixth mode) is
written as

V tot ¼
X5
n¼0

Vn cosωnτ − V6 cosω6τ: ð10Þ

From the parabola-shaped profile of the injection kick
based on five harmonic modes in Fig. 3(b), we assume this
total kick profile is also a parabola centered at the origin
that can be described as V tot ¼ ατ2 þ Vkick for some
constant α. Then α is obtained by double differentiation
with respect to time at origin:

α ¼ 1

2

d2

dτ2
V totjτ¼0 ¼ −

1

2

�X5
n¼1

Vnω
2
n − V6ω

2
6

�
: ð11Þ

Now the smaller α is, the closer to a flat line the total kick
profile becomes. For example, α ¼ 0 would be obtained by
condition

V6 ¼
1

ω2
6

X5
n¼1

Vnω
2
n: ð12Þ

Although we could obtain a prekick amplitude for a
more general harmonic kick by numerically adding up at
this stage, we focus on the equal amplitude option, i.e.,
Vn ¼ Vh for n ¼ 1; 2;…; 5:

V6

Vh
¼

�
fk
f6

�
2X5
n¼1

ð2n − 1Þ2 ¼ 165

�
fk
f6

�
2

: ð13Þ

Up to Eq. (13), we still have the freedom to choose f6 and
V6, but a more practical choice would be a single-frequency
952.6 MHz QWR, which is the sixth odd harmonic of fk;
then f6 ¼ ð2 × 6 − 1Þfk and V6=Vh ¼ 15=11, which leads
to V6 ¼ 34.1 kV. Numerically adjusting for a flat field
profile over the largest range possible shows that one can
obtain a longer flat interval when a larger error is used. To
obtain a flat interval of�6l (l is a bunch length in Table I), a
slightly higher amplitude V6 ¼ 38.1 kV will flatten the

curve better—while adding the higher order terms in
V tot ¼ −αt2. The specification of the PRK/POKs is listed
in Table II. Because the pre/post kick is applied in the
opposite direction to the harmonic kicks, its maximum
amplitude V6 must be compensated by an additional dc
magnet of equal strength [see Eq. (10) equated to the
expression belowat τ ¼ 0 in particular]. The temporal profile
of the rf fields with the prekicker introduced is shown to be
flat in Fig. 3(b).

B. Analytical description of the beam parameter change
in the kicker: Simple kick model

In this subsection, we focus on a specific kick model that
will be used in the ELEGANT simulation and give an
analytical description for some of the beam parameters.
The longitudinal coordinate of an electron trailing the
reference electron by time τ is zðtÞ ¼ cðt − τÞ and
Eq. (1) can be rewritten as

Δpx ¼
XN
n¼1

Re

�Z
l=2c

−l=2c
dtF nðcðt − τÞÞe−iωnt

�
; ð14Þ

where l is an effective range of the kick fields. If the kick is
given in an impulsive kick model, i.e., F nðcðt − τÞÞ ¼
eVnδðcðt − τÞÞ, where Vn is a normalization constant that
will be identified as the kick voltage of each mode, then
Eq. (14) is straightforward to integrate,

¼ e
c

XN
n¼1

Re½Vneiωnτ�: ð15Þ

If Vn ¼ Vh for all n in equal amplitude option, then
Eq. (15) reduces to

¼ eVh

c
Re

�
1 − e2iNωkτ

1 − e2iωkτ
eiωkτ

�

¼ eVh

c
sin ðωkτÞ sin ð2NωkτÞ

1 − cos ð2ωkτÞ
¼ eVh

2c
sin ð2NωkτÞ
sin ðωkτÞ

: ð16Þ

Equation (16) is a relevant model for the ELEGANT

simulation, where the implementation of the kick is limited
to the impulsive kick model as its default option for a
harmonic kicker.
Now, we can compute the changes in some of the beam

parameters. First, the motion of bunch is obtained by
integrating over the bunch length weighted by longitudinal
distribution function. With a top-hat distribution, the
momentum change of the bunch whose reference electron
arrives at t ¼ m=fb, m ¼ 0; 1;…; 11 is given as
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ΔPx

�
m
fb

�
¼eVh

cτb

XN
n¼1

Re

�Z
m=fbþτb=2

m=fb−τb=2
dτeiωnτ

�

¼2eVh

cτb

XN
n¼1

�
cosðωnm=fbÞ

ωn
sinωnτb=2

�
; ð17Þ

which reduces to eVh=c
P

N
n¼1 cos ðωnm=fbÞ as τb → 0. In

particular with m ¼ 0, ΔPxð0Þ → NeVh=c, which is the
design kick voltage. Second,

ΔP2
x

�
m
fb

�
¼N

XN
n;l¼1

Z
m=fbþτb=2

m=fb−τb=2
dτcosωnτcosωlτ

¼N
XN
n;l¼1

�
1

ω−
sin

ω−τb
2

cos
ω−m
fb

þðω−→ωþÞ
�
;

ð18Þ

where N ¼ 1

τb

�
eVh

c

�
2

; ω� ¼ ωn � ωl: ð19Þ

Finally, the change in emittance can be computed
perturbatively for a small momentum change as

δε ¼ 1

2ε0
fhx20ihðδx0Þ2i − 2hx0x00ihx0δx0ig

¼ 1

2ε0
hx20ihðδx0Þ2i ¼

hx20i
2ε0m2c2γ2

ΔP2
x

�
m
fb

�
; ð20Þ

where α0 ¼ hx0x00i ¼ 0 at the kicker location has been used
in the second equality. The last equality is obtained using
px ¼ mcγx0 and (18).

C. A simulation study

The design of the kicker system in the CCR has been
verified by simulations using ELEGANT, and it was shown
that the designed harmonic kickers can kick the bunches in/
out of the CCR without degrading the beam quality for 11
turns. The simulation was done with the simplest setup,
whose schematic is shown in Fig. 4. In Fig. 4, the
circumference l of the CCR was set to be l ¼ c=fb ¼
0.63 m for simplicity (with the real circumference being its
multiple) so that a single bunch of electrons circulate each
pass in t ¼ 1=fb ¼ 2.1 ns. Therefore, the bunch shots
recorded in the monitor at the kickers can be viewed both
as a bunch circulating 11 turns of the CCR or equivalently 11
consecutive bunches passing the kickers. The beam line
elements were represented by a pair of transfer matrices (see
Fig. 4), with thematrix 2 being−1 × I (I ¼ identity matrix),
corresponding to betatron phase advance of π.
There were some limitations implementing realistic

beam dynamics into ELEGANT. First, the realistic 3D field
map of the kickers could not be imported into ELEGANT.

Instead, the kick was modeled as a transversely uniform
and longitudinally impulsive kick. In the following sections
and the Appendix, a more realistic model for the kick will
be implemented with multipole fields and a Gaussian
longitudinal profile of the kick. This will also be bench-
marked against the 3D maps. Also the nonmagnetized
beam with the same beam parameter as magnetized beam
but with minimal canonical angular momentum was
propagated only to demonstrate the feasibility of the kicker
system. The effect of the kick on the magnetized beam will
be discussed in Sec. IV. Finally, space-charge effects cannot
be implemented in ELEGANT. Therefore, only a small
fraction of the bunch charge (1.2 pC) was used to achieve
a reasonably fast simulation. First, a baseline simulation
with a pair of the (injection/extraction) kickers only was
done and the corresponding beam trajectory was examined
in terms of the longitudinal (temporal) profiles of the
angular distribution (x0) of the bunch. In Fig. 5(c), the
electron bunches at the entrance of the IK are shown.
The first bunch is an injected bunch kicked at kick angle of
2.5 mrad. The subsequent recirculating bunches are subject
to the residual kicks of the EK upstream. For example, the
third and eighth bunch have large deformations with
angular divergence up to 2.6 × 10−4 mrad that are direct
imprints from the steep rf slopes of the kick profile on those
bunches in Fig. 3(a). These are largely eliminated by the IK
with the phase advance as shown in Fig. 5(a), where
the bunches at the exit of the IK are shown. In Fig. 5(a), the
banana-shaped bunch profile with the side wings to the
edge reaching up to 4 × 10−4 rad maintains its profile over
the 11 turns, which implies the effective cancellation by the
IK for each turn. The banana shapes are imprinted from the

FIG. 4. Schematic view of the CCR in the ELEGANT simulation.
The red dots are the injection/extraction kickers, the dark green
dots are pre/post kickers, the blue dot is the cooler, and the green
dots are watch points. The beam line is represented by a pair of
transfer matrices shown here.
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rf curvature of the first injection kick and would decrease
cooling efficiency significantly. The normalized emittance
in a kick direction was tracked through 11 turns and plotted
in Fig. 6(a). In Fig. 6(a), the emittance is dramatically
increased by the rf fields while the bunch is going through
the EK and the phase advance, but decreases due to the
aforementioned cancellation scheme by the IK. The emit-
tance at the cooler is still larger than the injection value due
to the rf curvature of the first IK. With the implementation
of PRK/POK, the side wings of the injected bunch is
removed by a combination of the prekick and injection
kick. Consequently, every bunch at the cooler has a flat

angular distribution profile along the bunch length with the
angular divergence reduced to �0.2 mrad, as shown in
Fig. 5(b). The side wings of the extracted bunch imprinted
by theEKwhen the bunchgoes back to theERLafter 11 turns
ismostly eliminatedwith the useof thePOK.The normalized
emittancewith PRK/POKat the cooler location in Fig. 6(b) is
much smaller than without PRK/POK [Fig. 6(a)] and is now
almost the same as the initial emittance. The emittance
growth between the EK and the IK, which are up to 2.4 ×
10−4 mrad for the third and the eighth turn, leads to a
significant beam size increase, which was taken into account
in the aperture design of the exchange region.

FIG. 5. Longitudinal profiles of an electron bunch circulating 11 turns: at the CCR (top) and on the recirculation transport before
injection kick (bottom) with (left) and without (right) the use of a prekicker. (a) Longitudinal profile of the angular divergence, xp, for a
circulating electron bunch at the cooler (without prekicker).(b) Same as in (a) but with prekicker. (c) Same as in (a) but just before the
injection kicker. (d) Same as in (c) but with-prekicker. The curvature of the first bunch is due to the prekick.
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III. BEAM PROPAGATION THROUGH MORE
REALISTIC KICKS: AN IMPULSIVE KICK

MODEL WITH MULTIPOLES

In this section, the simple kick model used for the
baseline design is generalized to a more realistic model of
the actual field profiles within the QWR kicker cavity. We
will compute the phase space transform through general
field profiles for a beam whose transverse trajectory does
not change over the effective field range. The transform can
be expressed in terms of the multipole expansion of the
fields via the Panofsky-Wenzel theorem. The multipole
expansion coefficients for the QWR are obtained and fed
into the ELEGANT simulations, where a modified cancella-
tion scheme that includes the nontrivial multipole field
contribution is demonstrated.

A. Motion of electron bunch through a kick with
general profiles

Consider an arbitrary charged particle that passes
through the kicker cavity whose rf fields are general.
The relativistic equation of motion for the particle subject
to the general Lorentz force is given as

dp⃗
ds

¼ q
c
ðE⃗þ v⃗ × B⃗Þjt¼s=cþτ: ð21Þ

Here, v⃗ is the velocity of the particle and E⃗, B⃗ are the real
electromagnetic fields. The coordinate system and the
longitudinal initial conditions on the particle are described
in Sec. II B. For completeness, we add in transverse initial
conditions. A trajectory of the particle is uniquely deter-
mined by a set of initial conditions at s ¼ −l=2:

r⃗⊥ðs ¼ −l=2Þ ¼ r⃗⊥0; ð22Þ

p⃗⊥ðs ¼ −l=2Þ ¼ p⃗⊥0; ð23Þ

tðs ¼ −l=2Þ ¼ −
l
2c

þ τ; ð24Þ

Eðs ¼ −l=2Þ ¼ E0: ð25Þ

Here r⃗⊥ is the transverse offset, p⃗⊥ is the transverse
momentum, and E is the energy carried by a particle. In
principle, the exact solutions to the nonlinear equation (21)
with the general initial condition (22)–(25) could be given
by a systematic iteration method based on the perturbative
expansion of transverse phase space variables and fields.
But with some physical constraints on the initial conditions
and the fields, good approximate solutions are available.
From physical consideration of the CCR beam dynamics
and the geometry of the QWR, one can assume the motion
is paraxial with px;y ≪ pz ≈meγc and the E⃗, B⃗ are slowly
varying fields. Consequently, the perturbation in the trans-
verse trajectory of a particle within the kicker cavity is very
small (order of submillimeter) due to fast longitudinal
motion near c and limited size of the kicker. Then, the first
order approximation to the solution is obtained by replac-
ing r⃗ in E⃗ðr⃗Þ, B⃗ðr⃗Þ with r⃗0 in Eq. (21). In components,
Eq. (21) is written as

dpx

ds
¼e
c

�
Exðr⃗⊥0;sÞþ

Bzðr⃗⊥0;sÞ
meγ

py−cByðr⃗⊥0;sÞ
�
; ð26Þ

dpy

ds
¼e
c

�
Eyðr⃗⊥0;sÞ−

Bzðr⃗⊥0;sÞ
meγ

pxþcBxðr⃗⊥0;sÞ
�
; ð27Þ
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FIG. 6. The emittance growth through 11 turns in the CCR without (left) and with pre/postkickers (right). (a) Emittance change
without pre/postkickers. x ¼ 1 is the in-kicker (entrance) position, x ¼ 8 is the cooler position, and x ¼ 11 is the out-kicker (entrance)
position. (b) Emittance change with pre/postkickers. x ¼ 1 is in-kicker (entrance) position, x ¼ 11 is the cooler position, and x ¼ 13 is
the out-kicker (entrance) position. The beamline in the simulation includes four extra elements per turn: pre/postkicker with the
associated DC magnets, although they are turned off except for the first/last turn.
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dpz

ds
¼ e

c

�
Ezðr⃗⊥0; sÞ þ

Byðr⃗⊥0; sÞ
meγ

px −
Bxðr⃗⊥0; sÞ

meγ
p1;y

�
: ð28Þ

Now, we compute the phase space variable transform as solutions to Eqs. (26)–(28). First the transverse variables are
computed. Introducing complex variables P� ¼ px � ipy, E� ¼ Ex � iEy, and B� ¼ Bx � iBy, the equation of motion
can be written as [by ð26Þ þ ið27Þ]

d
ds

Pþ ¼ e
c

�
Eþðr⃗⊥0; sÞ þ icBþðr⃗⊥0; sÞ − i

Bzðr⃗⊥0; sÞ
meγ

Pþ

�
; ð29Þ

whose solution is given via 1D Green function Gðs; s0Þ (for the operator d
ds þ ieBzðsÞ=meγc) as

PþðsÞ ¼ P0e
− ie
meγc

R
s

−l=2
ds0Bzðr⃗⊥0;sÞ þ e

c

Z
s

−l=2
ds0Gðs; s0ÞfEþðr⃗⊥0; sÞ þ icBþðr⃗⊥0; sÞg; ð30Þ

where Gðs; s0Þ ¼ Hðs − s0Þe− ie
meγc

R
s

s0 ds
00Bzðr⃗⊥0;s00Þ: ð31Þ

Here, Hðs; s0Þ is a Heaviside step function, which is 1 between s and −l=2 and 0 otherwise. Therefore, the phase space
variables at arbitrary s are given as

pxðsÞ ¼ px0 cosΘðr⃗⊥0; sÞ þ py0 sinΘðr⃗⊥0; sÞ þ
e
c
Vxðr⃗⊥0; sÞ; ð32Þ

pyðsÞ ¼ py0 cosΘðr⃗⊥0; sÞ − px0 sinΘðr⃗⊥0; sÞ þ
e
c
Vyðr⃗⊥0; sÞ; ð33Þ

xðsÞ ¼ x0 þ px0

Z
s

−l=2
ds0

cosΘðs0Þ
mecγ

þ py0

Z
s

−l=2
ds0

sinΘðs0Þ
mecγ

þ
Z

s

−l=2
ds0

eVxðs0Þ
mec2γ

; ð34Þ

yðsÞ ¼ y0 þ py0

Z
s

−l=2
ds0

cosΘðs0Þ
mecγ

− px0

Z
s

−l=2
ds0

sinΘðs0Þ
mecγ

þ
Z

s

−l=2
ds0

eVyðs0Þ
mec2γ

; ð35Þ

where Θðr⃗⊥0; sÞ ¼
e

mecγ

Z
s

−l=2
ds0Bzðr⃗⊥0; s0Þ sin

�
ω

�
s0

c
þ τ

�
þΦ

�
; ð36Þ

Vxðr⃗⊥0; sÞ ¼
Z

s

−l=2
ds0

�
Exðr⃗⊥0; s0Þ cos

�
ω

�
s0

c
þ τ

��
− cByðr⃗⊥0; s0Þ sin

�
ω

�
s0

c
þ τ

�
þΦ

��
Gðs; s0Þ; ð37Þ

Vyðr⃗⊥0; sÞ ¼
Z

s

−l=2
ds0

�
Eyðr⃗⊥0; s0Þ cos

�
ω

�
s0

c
þ τ

��
þ cBxðr⃗⊥0; s0Þ sin

�
ω

�
s0

c
þ τ

�
þΦ

��
Gðs; s0Þ: ð38Þ

Here, we assumed E⃗, B⃗ are oscillating with harmonic frequency ω and phaseΦ. In a deflecting operation, the phase is set
to be on crest, i.e., Φ ¼ 0.
To solve for the remaining (longitudinal) phase space variables, we first obtain a solution to Eq. (28) as

pzðsÞ ¼ p0z þϒðr⃗⊥0; sÞ; ð39Þ

where ϒðr⃗⊥0; sÞ ¼
e
c

Z
s

−l=2
ds0

�
Ezðr⃗⊥0; s0Þ cos

�
ω

�
s0

c
þ τ

��

þ pxðs0Þ
meγ

Byðr⃗⊥0; s0Þ sin
�
ω

�
s0

c
þ τ

��
−
pyðs0Þ
meγ

Bxðr⃗⊥0; s0Þ sin
�
ω

�
s0

c
þ τ

���
: ð40Þ

With s ¼ l=2, we have pz ¼ pz0 þϒðr⃗⊥0Þwhere ϒðr⃗⊥0Þ ¼ ϒðr⃗⊥0; s ¼ l=2Þ. Notice that ϒðr⃗⊥0Þ becomes 0 with τ ¼ 0
with the antisymmetric Ez (Ezð−sÞ ¼ −EzðsÞ within the kicker cavity, as suggested from the rf simulation of the kick
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fields), while ϒðr⃗⊥0Þ is nonzero with nonzero τ. Then, the energy E at s is obtained to the second-order perturbation using
Eqs. (32), (33), and (39) as

EðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

ec4
q

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0c

2 þm2
ec4

q
þ c2

E0

p⃗0 · δp⃗þ c2

2E0

ðδpÞ2

≈ E0 þ
c2

E0

�
−px0

�
1 −

eVx

c
cosΘþ eVy

c
sinΘ

�
− py0

�
1 −

eVx

c
sinΘ −

eVy

c
cosΘ

�

þ E0

c
ϒþ p2

x0 þ p2
y0 þ

1

2

�
eVx

c

�
2

þ 1

2

�
eVy

c

�
2

þϒ2

2

�
; ð41Þ

where the approximation in the first line was taken with
paraxial momenta (px0; py0 ≪ pz0). For a rough estimation
of the energy change, we compute the energy change
through the kicker in case of vertical kick with zero initial
slopes, i.e., Vy ¼ px0 ¼ py0 ¼ 0 and s ¼ l=2, as illustrated
in Fig. 7. Then, Eq. (41) reduces in this limit to

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0cÞ2 þ ðmec2Þ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0

zcÞ2 þ ðmec2Þ2
q

≈ c

�
Δpz þ

1

2

Δp2
x

p0
z

�
≈ c

�
ϒþ c

2E0

�
eVx

c

�
2
�
: ð42Þ

In the simple kick model, Eq. (42) with ϒ ¼ 0 would
reduce to

≈
c2

2E0

�
eVh

c

�
2 XN
n;l¼1

cosωnτ cosωlτ: ð43Þ

In particular with τ ¼ 0, putting p0
z ¼ 55 MeV=c and

Δpx ¼ 125 keV=c would lead to ΔE ≈ 143 eV only,
which is negligible. Finally, the relative time tðsÞ (to a
fiducial particle) it takes for an electron to arrive at s along
the beam line is obtained from inverting the relativistic
definition of pz:

dt
ds

¼ meγ

pz
−
meγ

pz

				
τ¼0

: ð44Þ

With a narrow energy spread in the order of 10−4 and a
small change in velocity over the effective field range, we
have a Taylor expansion as γ ≈ γ0 þ γ30β⃗ · δβ⃗ and 1=pz ≈
1=pz0 − δpz=p2

z0 with δ denoting the derivative with respect
to τ evaluated at τ ¼ 0 and Eq. (44) is approximated as

dt
ds

≈ −
1

c

�
1

pz0
δpz − γ20δβz

�
¼ −

1

cpz0

δpz

1þ γ20

¼ −
eω

c2pz0

1

1þ γ20

Z
l=2

−l=2
ds0Ezðr⃗⊥0; s0Þ sin

ωs0

c
≪ 1; ð45Þ

where the second equality is obtained with δpz ¼
mecγ30δβz þmeγ0δvz ¼ pz0ðγ20 þ 1Þδβz. Therefore, the
bunch length change is close to zero.

B. Multipole expansion of the field

The phase space variable transforms through the cavity,
obtained by setting s ¼ l=2 in Eqs. (32)–(38), can be
compactly rewritten in terms of the multipole fields. In
particular, for a beam in the extreme paraxial limit with px0,
py0 → 0, for example, a nonmagnetized beam that has
nearly zero slopes at the kicker entrance, the Panofsky-
Wenzel theorem [20] holds accurately [21] and is appli-
cable to the right-hand side of Eq. (37)—the x, y motion of
the beam is decoupled and we focus on the motion in the
kick direction only. Consequently, the transverse momen-
tum change (32) at the exit can be expressed in terms of the
longitudinal field component Ez, making multipole eval-
uations much simpler compared to the full Lorentz force
expansion:

px ¼ −
e
ω

Z
l=2

−l=2
dz∇xEzðr⃗⊥0; zÞ sin

�
ω

�
z
c
þ τ

��
: ð46Þ

Hereafter, all the phase variables without arguments are
understood to be evaluated at s ¼ l=2. Now the integrand in
Eq. (46) is expanded in terms of multipole fields of Ez
around the beam axis (analogous to static magnetic fields,
see the Appendix of [22] for more details). First, the

p0z 

p0x = F t

p0z = F t

p
p px=F t

pz=F t

FIG. 7. The diagram for momentum change through a harmonic
kicker. The initial momentum is p0

z and the exit momentum is p0.
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complex version Ẽz of Ez such that Ez ¼ Re½Ẽz� is
expanded over transverse plane in polar coordinates into

Ẽzðr⃗⊥0; zÞ ¼
X∞
n¼0

CnðzÞrneinϕ; ð47Þ

where CnðzÞ ¼
1

πrn

Z
2π

0

dϕEzðr⃗⊥0; zÞe−inϕ: ð48Þ

By plugging the real part of Eq. (47) into Eq. (46), we
have

px ¼ −
e
ω

X∞
n¼1

nRefcnðx0 þ iy0Þn−1g; ð49Þ

where complex multipole expansion coefficients cn’s are
defined as

cn ¼
Z

l=2

−l=2
dz

1

πrn

�Z
2π

0

Ezðr⃗Þe−inϕdϕ
�
sin

�
ω

�
z
c
þ τ

��
:

ð50Þ

The complex coefficients cn’s are written as
cn ¼ bn − ian, where bn, an’s are identified as normal
and skew multipole coefficients, respectively. The coeffi-
cients in Eq. (50) for the QWR are numerically evaluated

by inserting the 3D field maps of the Ez, which is obtained
from the rf field simulation by the CST-MWS (the details of
the accurate evaluation of the 3D field maps in the QWR
are found in the Appendix of [22]). Finally, the phase space
transforms (32)–(38) after the kicker are simplified as

px ¼
e
c
Vx; ð51Þ

py ¼
e
c
Vy; ð52Þ

x ¼ x0 þWx; ð53Þ

y ¼ y0 þWy; ð54Þ

where Vx ¼
X5
n;m¼1

c
ωm

Refcnmnðx0 þ iy0Þn−1g; ð55Þ

Vy ¼
X5
n;m¼1

c
ωm

Reficnmnðx0 þ iy0Þn−1g; ð56Þ

Wx ¼ −
X5
n;m¼1

e
mecγωm

½wx þRefdnmnðx0 þ iy0Þn−1g�;

ð57Þ

Wy ¼ −
X5
n;m¼1

e
mecγωm

½wy þRefidnmnðx0 þ iy0Þn−1g�; ð58Þ

where cnm ¼ cosωmτ

πrn

Z
l=2

−l=2

�Z
2π

0

EðmÞ
z ðr⃗⊥0; zÞe−inϕdϕ

�
sin

�
ωmz
c

�
dz; ð59Þ

wx;y ¼ sinωτ
Z

l=2

−l=2
dzEðmÞ

x;y ðr⃗⊥0; zÞ cos
�
ωmz
c

�
; ð60Þ

TABLE III. The multipole field coefficients of a harmonic kicker as evaluated based on the circle with 10 mm radius in hexahedral
meshing. The coefficients are evaluated based on kick voltage of 25 kV for each mode.

Multipoles Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

f (MHz) 86.6 259.8 433 606.2 779.4 952.6

b1 (V) 4.49 × 104 1.37 × 105 2.27 × 105 3.17 × 105 4.05 × 105 7.53 × 105

b2 (V=m) −4.16 × 105 −1.25×6 −2.05 × 106 −2.79 × 106 −3.46 × 106 6.31 × 106

b3 (V=m2) 5.33 × 106 1.62 × 107 2.68 × 107 3.75 × 107 4.88 × 107 9.83 × 107

b4 (V=m3) −3.66 × 107 −1.11 × 108 −1.82 × 108 −2.53 × 108 −3.28 × 108 6.68 × 108

b5 (V=m4) 2.08 × 108 6.31 × 108 1.05 × 109 1.48 × 109 2.03 × 109 4.85 × 109

a1 (V) −2.19 3.26 6.76 × 10 4.07 × 102 2.57 × 103 3.09 × 103

a2 (V=m) 8.09 × 10 4.45 × 10 −1.18 × 103 −7.86 × 103 −4.99 × 104 5.8004 × 104

a3 (V=m2) −4.48 × 103 −1.10 × 104 −2.71 × 103 6.86 × 104 5.18 × 105 5.68 × 105

a4 (V=m3) −3.85 × 104 7.80 × 104 −1.03 × 105 −1.28 × 106 −8.80 × 106 9.72 × 106

a5 (V=m4) 6.51 × 106 −2.01 × 107 3.54 × 107 6.06 × 107 1.53 × 108 2.11 × 108
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dnm ¼ cosωmτ

πrn

Z
l=2

−l=2
dz

Z
s

−l=2
dz0

�Z
2π

0

EðmÞ
z ðr⃗⊥0; z0Þe−inϕdϕ

�
sin

�
ωmz0

c

�
: ð61Þ

Here, we included all the harmonic modes (indexed with
m) for completeness. With Wx, Wy being very small, the
phase space transform (51)–(61) can be effectively viewed
as the impulsive kicks with multipole fields, which can be
represented in ELEGANT as beam line elements. The
resulting multipole coefficients up to decapole are listed
in Table III. The mode 6 in the table refers to the multipole
coefficients of the PRK/POKs. In the Table III, skew
multipoles are vanishingly small (compared to normal
multipoles) because of horizontal symmetry (with respect
to xz plane) of the fields, while there is no apparent
vanishing of even normal multipoles because of lack of
vertical antisymmetry (with respect to yz plane) in the
QWR structure. Also notice that the dipole coefficient for
each mode agrees with the kick voltage on beam axis (upon
multiplying c=ωm’s according to the Panofsky-Wenzel
theorem).

C. Cancellation scheme for multipole effects

The betatron phase advance cancellation scheme imple-
mented in Sec. II, based on a uniform transverse profile,
does not cancel kicks with nontrivial multipole fields: at
each turn, the effects of the even order multipoles in
Eq. (50) are not canceled between the injection and
extraction kicks but are doubled. To achieve multipole
cancellation, the kickers within the kicker system were
rearranged as illustrated in Fig. 8(a). In Fig. 8(a), the EK is
displaced from the IK by betatron phase advance of π as in
baseline, but the kicker is now flipped upside down with its
rf phase set to be π relative to the IK. With respect to this
rearrangement, the odd multipoles (dipole, sextupole, …)
are invariant, while the even multipoles (quadrupoles,
octopoles, …) flip the signs. Then, the extraction kick as
a vector sum of all the relevant multipoles at arbitrary x > 0
is identical with the injection kick at −x. This configuration
leads to the desired cancellation with a betatron phase
advance of π: An electron entering the EK at offset of x > 0
and slope x0 will be subject to a certain kick (a sum of all the
multipoles) from the EK ending up with x0 þ Δx0, and then
move down to −x with its slope flipped upside down, i.e.,
−ðx0 þ Δx0Þ. Then at −x in the IK, multipoles are exactly
the same as those in EK at x and an electron will pickupΔx0
from the IK, leading to −x0, which preserves the beam
matrix with symmetric beam distribution in x direction.
This can be stated more compactly as follows. If we

label an electron before the EK by 0, after the EK by 1, after
a betatron phase advance of π by 2, and after the IK by 3,
we have

px3 ¼ −px0 −
e
c
VExðx0Þ þ

e
c
VIxð−x0Þ; ð62Þ

py3 ¼ −py0 −
e
c
VEyðx0Þ þ

e
c
VIyð−x0Þ; ð63Þ

where the suffices E, I refer to extraction and IK,
respectively. On the other hand, for arbitrary x, y, the
extraction kick voltage VE is related to injection voltage VI
using Eq. (50) as follows:

x x

relative RF phase =  

betatron phase = 

Kicker top

 Kicker bottom Kicker top

Kicker bottom

(a)

(b)

Extraction kicker Injection kicker

 Beam axis

even poles

odd poles

Pre-kicker Post-kicker

injection
-kicker

extraction
-kicker

Transfer Matrix2

Sextupole 
magnetQuadrupole 

magnet

Transfer Matrix1
Cooler

FIG. 8. Multipole cancellation scheme at Ee ¼ 55 MeV.
(a) Cancellation schematic. The red arrow is the design kick,
i.e., dipole fields. The blue arrow refers to the velocity of an
electron along its trajectory. (b) Beamline schematic with the
magnets in injection transport. The green dots are monitors.

BEAM EXCHANGE OF A CIRCULATOR COOLER … PHYS. REV. ACCEL. BEAMS 24, 061002 (2021)

061002-13



VEðxÞ ¼ −
e
ω

� X
n¼odd

nRe½cnðxþ iyÞn−1� þ
X

n¼even

nRe½−cnðxþ iyÞn−1�
�

¼ −
e
ω

� Xr¼n−1

n¼odd;r¼0

nRe½cnCn−1;rxrðiyÞn−1−r� þ
Xr¼n−1

n¼even;r¼0

nRe½−cnCn−1;rxrðiyÞn−1−r�
�

¼ −
e
ω

� Xr¼n−1

n¼odd;r¼even

n½cnCn−1;rxryn−1−r� −
Xr¼n−1

n¼even;r¼odd

n½cnCn−1;rxryn−1−r�
�

¼ −
e
ω

� Xr¼n−1

n¼odd;r¼even

n½cnCn−1;rð−xÞryn−1−r� þ
Xr¼n−1

n¼even;r¼odd

n½cnCn−1;rð−xÞryn−1−r�
�

¼ −
e
ω

� X
n¼odd

nRe½cnð−xþ iyÞn−1� þ
X

n¼even

nRe½cnð−xþ iyÞn−1�
�

¼ VIð−xÞ: ð64Þ

Here, cn’s are the multipole expansion coefficients of the
IK and Cn−1;r ¼ ðn − 1Þ!=ððn − 1 − rÞ!r!Þ are binomial
expansion coefficients. Then making use of Eq. (64) leads
Eqs. (62) and (63) to complete cancellation.
Although this configuration cancels the multipole effects

of the EK by the IK, the multipole effects of the IK on the
electron entering the CCR in the first pass, i.e., the
multipoles of the injection deflecting kick are not canceled
and survive through all 11 turns. To eliminate these effects,
we introduce dc magnets whose field strength is adjusted
against nth multipole of the kicker according to the formula

X
m

n
ωm

bmn ¼ −
BρL
n − 1

kn−1; ð65Þ

where Bρ is particle rigidity, i.e., p=q with p, q being total
momentum and charge of an electron, respectively, and L is
the length of the magnet. In practice, n is limited to n ¼ 2, 3
(quadrupole and sextupole). This adjustment cancels the
multipoles of the PRK as well. The dc magnets are installed
in the injection transport line [see Fig. 8(b)] without having
to modify the CCR lattice, which would involve nontrivial
tune adjustments.

D. ELEGANT simulation results with multipole fields

An implementation ofmultipoles of the kickers—including
PRK/POKs—in the ELEGANT simulationwithoutmodifying a
baseline cancellation configuration leads to beam blowup
before completing 11 turns, as illustrated in Fig. 9(a). The
direct effects of multipoles fields on the beam distribution
would be an increase in angular divergence, which introduces
amismatch to the beam line lattice leading to an accumulating
increase of beam size over the turns. The consecutive
excitation of each multipole in the simulation suggests the
quadrupole fields in all the modes are main contributions to
the beam degradation, with a smaller contribution from
the sextupoles. This is consistent with the transverse profile
(in the kick direction) of the kick voltage in Fig. 9(b),
where the slope at the origin corresponds to the quadrupole
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FIG. 9. Multipole effects of the kicker without a cancellation
scheme. (a) Longitudinal profiles of electron bunches with multi-
poles (without any cancellation scheme), showing a blow-up in
angular divergence. (b) Integrated Lorentz force at various offsets.
The red (blue) curve is along the vertical (horizontal) axis.

PARK, GUO, RIMMER, WANG, and WANG PHYS. REV. ACCEL. BEAMS 24, 061002 (2021)

061002-14



and the deviation of the voltage curves from linear
extension of the slope are mostly accounted for by the
sextupole term.
With the modified cancellation scheme implemented, the

simulation results show that most of the multipole effects
are compensated between the EK and the IK. In Fig. 10(a),
the bunches at the exit of the IK are shown to be well
aligned along the beam axis with the minimum centroid
fluctuations and without significant increase in angular
divergence. The remaining small fluctuations in centroid
and angular distribution come from the uncanceled higher
order (octopoles and decapoles) multipoles in the first IK
and the prekick. The emittance tracking in Fig. 10(b) also
shows no significant increase over the turns, indicating the

effectiveness of the modified scheme. The growth in the
emittance, (36.15 mm mrad) slightly larger than without
multipole case (36.02 mm mrad), is due to the first kick and
prekick.

IV. PROPAGATION OF A MAGNETIZED BEAM

In this section, the propagation of a magnetized beam
through the CCR is studied. In Sec. IVA, we will describe
the design principle of the CCR without a harmonic kicker
system that achieves the optimal cooling with a magnetized
beam. In Sec. IV B, we add the kicker system to the CCR
and describe the interaction of the kick with a magnetized
beam, reexamining the cancellation scheme. In Sec. IV C, a
simulation study with a magnetized beam and a realistic
kick model is presented. The cooling characteristics,
including the Larmor emittance, are tracked to verify that
their values stay within allowed limits.

A. Magnetized beam in a CCR without kickers

The beam line design of the CCR appearing in Ref. [1]
was optimized for high cooling efficiency without a kicker
system. The design is based on the principle of using
magnetized beam and a properly matched beam line, which
was first proposed in Ref. [9] (see also Refs. [23,24], which
we will summarize in this section).
The cooling efficiency within the cooling solenoids is

inversely proportional to the cube of relative velocity and
proportional to overlap of an electron and ion beam.
Assuming the ion beam is on the beam axis, the relative
velocity increases rapidly as the electron transverse velocity
characterized by cyclotron motion increases, while the
overlap depends on various factors such as the transverse
aspect ratio (i.e., roundness of the cross section), the offset
of the centroid, angular divergence, and arrival time jitter.
In nominal operation of the CCR without a centroid offset,
angular divergence, and arrival time jitter, the optimal
cooling efficiency would be achieved with a round mag-
netized (i.e., calm without cyclotron motion) beam in
cooling solenoids. Such a beam can be obtained straight-
forwardly if the beam is generated at the cathode as a round
magnetized beam and transported properly, i.e., through a
globally invariant decoupled beam line [9,23] (see Fig. 11)
—We have found that the beam line does not have to be
locally rotationally symmetric but only has to be globally
symmetric. The globally invariant beam line conserves both
the CAM and the decoupling of cyclotron motion so that
the magnetized beam for optimal cooling rate can be
recovered at the cooler. In Fig. 11, the laser beam with
the round transverse profile is applied to the cathode in a
photocathode gun embedded in a Helmholtz coil to gen-
erate a round magnetized beam. Due to the uniform
longitudinal magnetic fields provided by the Helmholtz
coils, the motion of the beam remains largely longitudinal.
The 4 × 4 beam matrix of a round beam generated at the
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cathode, with a rotationally invariant distribution, is given
in a Cartesian lab frame as

Σcath ¼
�
A 0

0 A

�
; where A ¼

�
σ2L þ βϵth 0

0 ϵth=β

�
;

ð66Þ

where σL is rms size of the laser spot, β is the betatron
function at the cathode, and ϵth is the thermal emittance of
the gun, which in this case is negligibly small. Within the
solenoid, the convenient canonical variables capable of
describing the small transverse motion of the electrons are
the displacement d⃗ of the Larmor center and the cyclotron
motion k⃗⊥ around the center, which are given as

k⃗⊥ ¼ p⃗⊥ þ e
2c

ðB⃗ × ρ⃗Þ; ð67Þ

d⃗ ¼ ρ⃗ − ρ⃗L ¼ 1

2
ρ⃗ −

c
eB2

ðp⃗ × B⃗Þ; ð68Þ

where B⃗ ¼ Bẑ and ρ⃗L ¼ cðk⃗ × B⃗Þ=eB2 is the relative
displacement with respect to Larmor center. The circular
basis r̂ is defined based on the coordinates in Eqs. (67) and
(68) and related to Cartesian basis r as

r̂ ¼

2
6664
κ ¼ ffiffiffiffi

c
eB

p �
ky
kx

�

ξ ¼
ffiffiffiffi
eB
c

q �
dx
dy

�
3
7775; r̂ ¼ Kr; ð69Þ

where 2 × 1 vectors κ, ξ are called cyclotron and drift
degree of freedom, respectively. The explicit expression for

4 × 4 matrix K, if needed, can be obtained from Eqs. (67)
and (68). The electrons subsequently evolve in the mag-
netic field of the solenoid (including the fringe field) to a
round beam with rotation (i.e., nontrivial physical angular
momentum) as described in Cartesian basis as

Σ0 ¼
�

B LJ

−LJ B

�
; where L¼ Bs

2Bρ
ðσ2L þ βϵthÞ; ð70Þ

B ¼ εeff

�
β 0

0 1=β

�
; J ¼

�
0 1

−1 0

�
; ð71Þ

where Bs and Bρ are magnetic field of the solenoid and
beam rigidity, respectively, and L defines the magnetization
of the beam M ¼ γL and is identified as half of (physical)
angular momentum. The two (degenerate) eigenvalues of
Σ0 have been computed in Eq. (70) and can be represented
by the eigenemittances as

ε� ¼ εeff
2

�
β þ 1

β

�8<
:1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðε2eff − L2Þ
ε2effðβ þ 1=βÞ2

s 9=
;: ð72Þ

These eigenemittances are often called the Larmor and
drift emittances, respectively. Notice that within a solenoid,
a purely longitudinal motion of homogeneous beam implies
β ≈ 1 and Eq. (72) reduces to

ε� ¼ εeff � L: ð73Þ
The dynamics of a round magnetized beam along the

beam line is most conveniently described in terms of
beam matrix S and transfer matrices T of the beam line
in the circular basis, which is obtained from those (Σ, T)
in Cartesian basis via similarity transform, i.e.,
Kðs0ÞΣK−1ðs0Þ and KðsÞTðs; s0ÞK−1ðs0Þ for an arbitrary
initial coordinate s0 and final coordinate s. The beam
matrix Σ0 (66) at the beam line entrance is diagonalized by
a set of symplectic circular bases, i.e.,

S0 ¼ KΣ0K−1 ¼
�
εþ1 0

0 ε−1

�
; ð74Þ

where ε� corresponds to the emittance associated with
cyclotron and drift motion, respectively. Associated to the
beam matrix, there exist two invariants under symplectic
transform first found in Ref. [24]: If effective emittance εeff
is defined as square root of the determinant of B and “4D
emittance” ε4D as square root of the determinant of Σ0, then
they are related via Eq. (70) as

ε24D ¼ detðΣ0Þ ¼ ðε2eff − L2Þ2: ð75Þ
Although L and εeff may not be invariant under an

arbitrary symplectic transform, ε4D is always an invariant.
In addition, there exists a trace invariant I2 defined as

FIG. 11. Transport of the magnetized beam to the cooler. The
ERL mostly consists of an axisymmetric accelerating field and is
a rotationally invariant, decoupled beam line.
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I2ðΣ0Þ ¼ −
1

2
TrðJ4Σ0J4Σ0Þ ¼ 2ðε2eff þ L2Þ: ð76Þ

Because the basis conversion matrixK to circular basis is
symplectic, the 4D emittance and the trace invariant are
conserved. Then using Eqs. (74), (75), (76) and calculating
detðS0Þ, I2ðS0Þ, we have the relation in Eq. (73). The beam
transport between the two (cathode and cooler) solenoids is
designed so that the corresponding transfer matrix T in a
circular basis is globally rotation invariant and decoupled,
i.e., block diagonal:

T ¼
�
Cþ 0

0 C−

�
; C� ¼

�
cosψ� sinψ�
− sinψ� cosψ�

�
: ð77Þ

Here, C� are 2 × 2 rotationally invariant submatrices
parametrized by ψ� ∈ ½0; 2π�. Notice that detðC�Þ ¼ 1 and
C�CT� ¼ 1. Then, the transported beam matrix Σc in the
cooler is given as

Scool ¼ T S0T T ¼
�
εþCþCTþ 0

0 ε−C−CT−

�

¼
�
εþ1 0

0 ε−1

�
; ð78Þ

which implies the conservation of the CAM and the
eigenemittances (Larmor and drift) of the beam. Upon
matching Twiss parameters at the cooler entrance, this
would physically correspond to restoration of the round
beam and negligibly small cyclotron motion in the cooler, if
the beam starts with small cyclotron motion in the cathode.
While the Busch’s theorem holds throughout a globally

rotation-invariant beam line, the theorem simplifies if the
beam line is matched so that the cyclotron motion in the
cooler is zero: According to the theorem, the CAM L for an
electron within the (gun and cooler) solenoids is a constant
of motion given as

L ¼ meγρ
2 _ϕþ 1

2
eρ2B; ð79Þ

where me is the mass of electron, γ is the electron energy at
the gun, ρ is radial offset from the axis, and B is a uniform
magnetic field. With negligible transverse motions, i.e.,
_ϕ ¼ 0, in both solenoids, the CAM for the beam can be
computed as

L ¼ 1

2
eBcathσ

2
cath ¼

1

2
eBcoolσ

2
cool; ð80Þ

where σcath, σcool are the rms beam size of the electron and
Bcath, Bcool are the magnetic field at the cathode and the
cooler, respectively. From Eq. (80), the solenoid fields at the
cooler can be adjusted to match the electron beam size to
the ion beam size. According to Table I, the beam radius of
electron bunch at the cooling channel and the cathode are
rcooler ¼ 0.35 mm and rcath ¼ 1.1 mm (σL ¼ 2rcath),
respectively, leading to Bcool ¼ 1 T for the given
Bcath ¼ 0.1 T.
As a benchmark to the CCR design in Ref. [1], the

propagation of a round magnetized beam through the CCR,
optimized without kickers, was simulated in ELEGANT,
tracking the characteristics of cooling efficiency to define a
baseline for the modification that includes a kicker system.
In the beam line setup of the simulation, a round-to-flat
beam transformation [25] was inserted at the cooler
entrance [at “flat beam” (CCR4) in Table IV] for beam
diagnostic purpose: half the vertical (horizontal) effective
emittance εx (εy) of the artificially created flat beam
corresponds to the Larmor (drift) emittance of the round
beam, respectively. The flat beam was transformed back to
the round beam by a flat-to-round beam transformer [25],
before propagating into the cooling solenoids. The beam
parameters at important watch points around the CCR are
listed in Table IV. In Fig. 12, the transverse (x − y) beam
profiles (overlapped over 11 passes) around the CCR are

TABLE IV. The averaged beam parameters of the magnetized beam along the CCR over 11 passes. WIK is injection kicker entrance,
WIC is the cooler entrance, WCE is cooler exit, and WEK EK exit. There is a mirror symmetry in the beam parameters with respect to
the cooler.

Beam parameters Unit WIK WIC WCE WEK

Twiss parameter αx � � � 0 0 0 0
Twiss parameter βx m 110 0.37 0.37 109
Twiss parameter αy � � � 0 0 0 0
Twiss parameter βy m 6.7 0.37 0.36 6.8
rms size σx mm 6.13 0.36 0.36 6.14
rms size σy mm 1.51 0.36 0.36 1.51
Aspect ratio η � � � 4.06 ∼1 ∼1 4.06
rms angular divergence σx0 mrad 0.056 0.97 0.97 0.05
rms angular divergence σy0 mrad 0.23 0.97 0.97 0.23
Drift normalized emittance εnþ=2 mm mrad � � � 36 36 � � �
Larmor normalized emittance εn−=2 mm mrad � � � 1 1 � � �
Normalized CAM L=meγc mm mrad −1.4 −0.65 −0.65 −1.4
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shown. With the beam line designed to be only globally
invariant, the transverse profiles at the kickers are not round
but elliptical. The round magnetized beam profile is
recovered at the cooler entrance in every pass with aspect
ratios very close to 1, implying that the CAM is conserved
and beam line is indeed globally invariant. There is no
significant degradation in the Larmor emittance over 11
passes, indicating the beam line between the two solenoids
is properly decoupled.

B. Interaction of harmonic kicks
with a magnetized beam

When a deflecting kick in a specific direction is inserted
into the beam line of the CCR, the beam line is neither
globally invariant nor decoupled anymore, leading to the
possibility of beam quality degradation. The analysis of the
effects of deflecting rf kick on the magnetized beam was
done in Ref. [26] in a simpler context of transverse
magnetic (TM) type deflecting cavity—the deflection by
the TM mode is purely rotational by themagnetic fields and

leads to amomentum change dependent on the factor cosωτ.
In Ref. [26], the transformation of the phase space variables
was explicitly computed in linear optics with the kick
modeled as an impulsive kick and its effects linearized. In
addition, the cancellation scheme was shown to be effective,
which would imply that the cooling efficiency does not
degrade except for a small degradation from the injection
kick on the first pass. However, it was subsequently
demonstrated through numerical simulations that the can-
cellation scheme fails when an extended kick model is used.
Here, we take a more general and realistic approach, making
use of a general phase space transform (32)–(35), where
(1) the deflecting kicks are based on transverse electromag-
netic (TEM) modes with the momentum change depending
on the factor sinωτ, (2) the kicks include nontrivialmultipole
fields so that the computed transforms include a nonlinear
contribution, and (3) the longitudinal profile is extended over
the effective field range.
Unlike the case of a nonmagnetized beam, the initial

transverse momenta px0, py0 of a magnetized beam are

FIG. 12. The transverse (x − y) profiles of the magnetized beam around the CCR without kickers. The profiles were overlapped over
11 passes and they are close to single pass profiles due to stable beam dynamics.
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small but significant as determined by the angular momen-
tum. Subsequently, this leads to a transverse deviation of
the beam from the zero-slope trajectory for a small
perturbation. In view of Eqs. (32)–(35), the nonzero
transverse momenta are now coupled with other compo-
nents of the fields, for example Bz, that would change the
angular momentum. Also the transverse coordinates of the
fields within the integrals are not constant r⊥0 anymore.
This is inconsistent with the impulsive kick model based on
the zero-slope trajectory as defined at the kicker entrance. To
account for the trajectory deviation, an extended kick model
must be introduced based on a realistic 3D field profiles as
obtained from the CST simulations. Assuming that the spatial
profile Fnm of a generic nth-multipole field in themth mode
is separable as Fnmðr⃗⊥; sÞ ¼ F⊥;nmðr⃗⊥ÞFk;nmðsÞ with tem-
poral profile e−iωmðtþτÞ oscillating at the frequency ωm, the
longitudinal profile Fk;nm is fitted to the CST-generated kick

profile, which is a combination of theGaussian profile and its
derivative:

Fk;nmðsÞ ¼ N nme−s
2=2σ2nmð1þ jsjBnmÞ; ð81Þ

where N nm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2nm

p
þ 2σ2nmBnm

: ð82Þ

Here, σnm is the standard deviation of the Gaussian
profile, Bnm is a fitting constant to the CST-generated
profiles, and N nm is a normalization constant so that the
integral of Fk;m is 1. With the transverse profile F⊥;nm

identified with the multipole expansion at the fixed trans-
verse coordinate r⊥, this profile produces the nominal kick
voltage on beam axis. Collecting all the multipoles and
modes, the total field profile F can be approximated as a
series of impulsive kicks separated by drift spaces:

FX;Y
e ðr⊥; sÞ ¼

XN
k¼−N

X5
n;m¼1

f1þ BX;Y
nm jkjdgAX;Y

nm ðr⊥k; kÞδðs − kdÞ; ð83Þ

where AX;Y
nm ðr⊥k; kÞ ¼

1

ZX;Y
nm

e−k
2d2=2σ2nmRe½cX;Ynm nðxk þ iykÞn−1�; ð84Þ

ZX;Y
nm ¼

XN
k¼−N

ð1þ BX;Y
nm jkjdÞe−k2d2=2σ2nm ; cXnm ¼ cnm; cYnm ¼ icnm; ð85Þ

where Fe is a Lorentz force in transverse direction per
charge, d, vacuum (drift) spacing between δ functions, N,
roughly half the number of δ functions in the field profile
range (ð2N þ 1Þd ¼ l), BX;Y

nm , a fitting constant to the CST-
generated profiles, and Aðr⊥;k; kÞ, the field amplitude of the
δ function at the kth displacement. In this model, we used
r⊥ðsÞ ¼ r⊥kδðs − kdÞ with r⊥k recursively determined
from initial value r⊥0 via r⊥k ¼ r⊥k−1 þ p⊥k−1d=ðmeγcÞ ¼
r⊥k−1 þ d=ðmeγcÞ

P
5
n;m¼1 ncnmðr⊥k−1Þn−1. Then making

use of Eqs. (83)–(85) as the transverse component of the
Lorentz force, the Vx;y, Wx;y appearing in Eqs. (32)–(35)

are modified as follows. First, the coordinates r0⊥ in the
arguments of the fields in Eqs. (32)–(35) are replaced by r⊥,
and the integration is broken up into a series of segments
containing δ functions. Then, each integration over the kth
segment ðk − 1=2Þd ≤ s < ðkþ 1=2Þd is done in the
similar way as in an impulsive kick model with a different
r⊥k at each s ¼ kd. Consequently, we have for a kick
direction

px ¼ px0 cosΘþ py0 sinΘþ e
c
Vx; ð86Þ

where Vx ¼
Z

l=2

−l=2
ds

XN
k¼−N

f1þ BX
nmjkjdgAX

nmðkÞδðs − kdÞ cos ðωnτÞ

¼
XN
k¼−N

X5
n;m¼1

f1þ BX
nmjkjdgAX

nmðkÞ cos ðωnτÞ; ð87Þ

x ¼ x0 þ Cpx0 þ Spy0 þWx; ð88Þ
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where Wx ¼
Z

l=2

−l=2
ds

e
mec2γ

Z
s

−l=2
ds0

XN
k¼−N

f1þ BX
nmjkjdgAnmðkÞδðs0 − kdÞ

¼ e
mec2γ

�Z
−l=2þd

−l=2
dsþ � � � þ

Z
−l=2þðk0þ1Þd

−l=2þk0d
dsþ � � � þ

Z
l=2

l=2−d
ds

� XNðsÞ

k¼−N
f1þ BX

nmjkjdgAnmðkÞ

¼ e
mec2γ

X2N
k0¼0

X−ðN−k0Þ

k¼−N
f1þ BX

nmjkjdgAnmðkÞ; ð89Þ

where the Bz field in Θ has a similar expansion as Eq. (83).
The phase space transform in y components is similarly
obtained with the replacement of AX

nm, BX
nm, ZX

m, cXnm with
AY
nm, BY

nm, ZY
m, cYnm, respectively. For the beam dynamics

simulation with magnetized beam in the next subsection,
this extended kick model will be implemented into the
ELEGANT and x, px in Eqs. (86) and (88) will be used to
numerically evaluate the phase space transform for com-
parison. In Eqs. (86) and (88), the extended kick model
has three contributions to the changes in phase space
variables. One comes directly from the initial momentum
p0x;0yl=ðmeγcÞ as determined by the CAM of the magnet-
ized beam. This contribution is accounted by the first term
in Eqs. (86) and (88), which would vanish in an impulsive
kick model. The second is from the multipole fields at
nonzero displacement as in impulsive kick model, leading
to the changes in Vx;y,Wx;y: the electrons at different initial
offset will get different kicks. The third is from combina-
tion of momentum change at each impulsive kick, its
corresponding displacement over each drift space, and a
different kick (due to multipoles) at the next impulsive kick.
Consequently, both momentum and the displacement
change, but this change is relatively small due to compact
length of the kicker profile. With the second contribution
almost canceled in the cancellation scheme, the first

contribution becomes a leading order contribution to the
change, i.e., no significant momentum change, but the more
subtle parameters such as the Larmor emittance are affected
via the change of transverse beam size.
Subsequently, the cancellation scheme with an extended

kick model is examined based on phase space variable
transform (86), (88) with (87), (89). With a magnetized
beam whose 4D phase space variables are denoted as
Vk ¼ ðxk; pxk; yk; pykÞT—the subscripts in Vk’s, i.e.,
k ¼ 0, a, b, c denote the phase space variables before
the EK, after the EK, before the IK, and after the IK,
respectively—the betatron phase advance is given by a
generalized (block diagonal) transform matrix, i.e.,

2
6664

xb
pxb

yb
pyb

3
7775 ¼

2
6664
Px Qx 0 0

Rx Sx 0 0

0 0 Py Qy

0 0 Ry Sy

3
7775
2
6664

xa
pxa

ya
pya

3
7775: ð90Þ

Here, we assumed the longitudinal phase space trans-
form of the betatron phase advance is identity, i.e., the beam
line is isochronous and monoenergetic [26]. Then through a
pair of the kickers with betatron phase advance (90), using
the general formula (86)–(89), phase space variables trans-
form from V0 to Vc as

pxc ¼ Rx cos Θ̃x0 þ Ry sin Θ̃y0 þ ½cos Θ̃ðSx cosΘþ CRxÞ − sin Θ̃ðSy sinΘþ SRyÞ�px0

þ ½cos Θ̃ðSx sinΘþ SRxÞ þ sin Θ̃ðSy cosΘþ CRyÞ�py0 þ Rx cos Θ̃Wx þ Ry sin Θ̃Wy

þ
�
eṼx

c
þ eVx

c
Sx cos Θ̃

�
þ Sy sin Θ̃

eVy

c
; ð91Þ

pyc ¼ Ry cos Θ̃y0 − Rx sin Θ̃x0 þ ½cos Θ̃ðSy cosΘþ CRyÞ − sin Θ̃ðSx sinΘþ SRxÞ�py0

− ½cos Θ̃ðSy sinΘþ SRyÞ þ sin Θ̃ðSx cosΘþ CRxÞ�px0 þ Ry cos Θ̃Wy − Rx sin Θ̃Wx

þ
�
eṼy

c
þ eVy

c
Sy cos Θ̃

�
− Sx sin Θ̃

eVx

c
; ð92Þ
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xc ¼ ðPx þ C̃RxÞx0 þ ½CðPx þ C̃RxÞ − SS̃Ry þ cosΘðQx þ C̃SxÞ − S̃Sy sinΘ�px0

þ S̃Ryy0 þ ½SðPx þ C̃RxÞ þ CS̃Ry þ sinΘðQx þ C̃SxÞ þ S̃Sy cosΘ�py0

þ ðPx þ C̃RxÞWx þ W̃x þ ðQx þ C̃SxÞ
eVx

c
þ S̃RyWy þ S̃Sy

eVy

c
; ð93Þ

yc ¼ ðPy þ C̃RyÞy0 þ ½CðPy þ C̃RyÞ − SS̃Rx þ cosΘðQy þ C̃SyÞ − S̃Sx sinΘ�py0

− S̃Rxx0 − ½SðPy þ C̃RyÞ þ CS̃Rx þ sinΘðQy þ C̃SyÞ þ S̃Sx cosΘ�px0

þ ðPy þ C̃RyÞWy þ W̃y þ ðQy þ C̃SyÞ
eVy

c
− S̃RxWx − S̃Sx

eVx

c
; ð94Þ

where Θ, C, S, Vx;y, Wx;y are evaluated at EK, while Θ̃, C̃,
S̃, Ṽx;y, W̃x;y are at IK. In this general phase space transform
(91)–(94), the cancellation cannot be made perfect for any
choice of transform matrix in Eq. (90). Notice that with an
impulsive kick model with Bz ¼ 0, the kicks are com-
pletely canceled through the multipole cancellation
scheme. First l → 0 and Θ̃, Θ → 0 implies C,
C̃ → l=mecγ0 → 0, S, S̃ → 0, Wx, W̃x, Wy, W̃y → 0 and
with the choice of Px ¼ Sx ¼ Py ¼ Sy ¼ −1 and Qx ¼
Rx ¼ Qy ¼ Ry ¼ 0 in Eq. (90), the transforms (86)–(88)
reduce to

pxc ¼ −px0 þ
�
eṼx

c
−
eVx

c

�
; ð95Þ

pyc ¼ −py0 þ
�
eṼy

c
−
eVy

c

�
; ð96Þ

xc ¼ −x0; ð97Þ

yc ¼ −y0: ð98Þ

Now, the kicks are completely canceled with Vx ¼ Ṽx,
Vy ¼ Ṽy. Then, the only remaining effect is by the injection
kick at the first pass, which is relatively small.
The realistic 3D field profiles of the kick within the

kicker cavity, as suggested from the CST simulations, have
negligibly small Bz, Ey, Bx fields in the vicinity of the beam
axis. This implies Vy, Wy → 0, Θ → 0, C → l=mecγ,
S → 0. Now with the choice of Px ¼ −1, Rx ¼ 0,
Qx ¼ l=mecγ0, Sx ¼ −1 in Eq. (90), we can eliminate
many contributing terms in general phase space transforms
(91)–(94) leading to

pxc ¼ −px0 þ
eṼx

c
−
eVx

c
; ð99Þ

pyc ¼ −py0 þ
eṼy

c
−
eVy

c
; ð100Þ

xc ¼ −x0 −
l

mecγ0
px0 −Wx þ W̃x; ð101Þ

yc ¼ −y0 −
l

mecγ0
py0 −Wy þ W̃y: ð102Þ

In Eqs. (99)–(102), the momentum cancellation cannot be
exact because the multipole effects in Vxðx0; y0Þ and
Ṽxðxb; ybÞ are not the same. However, these effects are
not significant to angular distribution of the beam, as shown
in Fig. 16(e). On the other hand, with negligibly small Wx,
W̃x,Wy, W̃y over the short field range, the offset evolutions
approximate to xc≈−x0− lpx0=meγ, yc ≈ −y0 − lpy0=meγ,
increasing the Larmor emittance.

C. Beam dynamics simulations
for the CCR with kickers

In this subsection, we present simulation results for the
CCR beam dynamics with harmonic kicks implemented,
tracking a few critical parameters for cooling efficiency.
The propagation of the magnetized beam would be most
accurately simulated with the 3D field maps from the CST-
MWS—whose direct import into the beam dynamics sim-
ulation is available in the tracking code GPT [27]. However,
GPT, designed as a tracking code for linear accelerators,
does not support multipass-tracking or transfer matrix
implementation, which makes it inadequate for full-fledged
CCR beam dynamics simulations. In this paper, we use GPT

only to benchmark the ELEGANT simulation and analytical
computations, by simulating a single pass through the
cavity. The benchmarking is described in the Appendix.
The results from the ELEGANT, GPT, and analytical compu-
tation show that the beam parameters, beam matrix ele-
ments, and centroid trajectories agree with one another to
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within 5%. Therefore, we used ELEGANT to carry out the
full simulations with an appropriate kick model for the 3D
field maps: a harmonic kicker was realized in an extended
kick model, i.e., a train of δ functions spaced with drift
space as shown in Fig. 13. The amplitude of each δ function
is scaled according to the pseudo-Gaussian (sum of
Gaussian and its derivative) longitudinal kick profile as
obtained from the CST-MWS simulation.
The betatron phase advance (equal to π) between the EK

and the IK is adjusted to a nondiagonal matrix [according to
the parameter choices above (99)–(102)] to account for
magnetized beam propagation. To compare the effects of
the extended kick, the simulations were run with both the
impulsive and extended kick models. With an impulsive
kick model, as theoretically predicted, there is little
degradation in all the beam parameters except for a very
small degradation from the first injection kick. All the
subsequent kicks are completely canceled. The resulting
beam parameter evolutions at the cooler entrance are shown
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FIG. 13. The longitudinal field profile in a long kick model for
the Lorentz force. The model consists of a series of 27δ-function
kicks separated by drift spaces. The envelope of the amplitudes is
Gaussian.

FIG. 14. The evolution of transverse profiles at the cooler over 11 turns.
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in Fig. 16. As the results of the perfect cancellation with the
impulsive kick, there are very little change in eigenemit-
tances [Fig. 16(a)] and only small fluctuations in the aspect
ratio and the CAM [Fig. 16(b)], implying that the beam
remains round over 11 turns. In addition, the evolution of
the centroid and its slope is shown in Figs. 16(c) and 16(d)
with little contribution from the kicker.
With the extended kicks, however, tracking of the beam

parameters (Fig. 16) shows significant degradations. The
transverse profiles (x − y plot) at the cooler entrance shown
in Fig. 14 show the deformations gradually evolving over
11 passes, implying imperfect cancellation between the
kicks. The solid round circle gradually turns into a tilted
ellipse with the aspect ratio degrading significantly as the
passes accumulate. More specifically, the deformation is a
combined effect of nonconservation of the CAM [Fig. 16(b)]
and centroid deviations [Fig. 16(c)]—caused by the har-
monic kick. As expected from the analytical expression, the
Larmor emittance of the beam at the cooler increases
significantly over passes, while the drift emittance drops
[Fig. 16(a)]. This can also be seen fromFig. 15,where the flat

beam distributions at the cooler are shown to deform—tilted
with an increased horizontal emittance—as the passes
accumulate. Further analysis based on Eq. (73) and param-
eter inspection shows that the increase in the Larmor
emittance over the passes comes mostly from the increased
CAM, while a decrease in the Larmor emittance with
multipoles on is caused by a quadrupole focusing contribu-
tion that reduces output beam size hx20i in εeff downstream at
the cooler. Overall, after 11 passes, the Larmor emittance is
stillmuch smaller than 19mmmrad, tolerance for the cooling
efficiency. The centroid trajectories and slopes were tracked
over the passes in Figs. 16(c) and 16(d), respectively. The
fluctuating deviations from zero line are a little larger than
with the impulsive kick, i.e., up to �2.5 mrad and
�0.13 mm, respectively. The resulting angular distribution
of the bunch is shown in Fig. 16(e) with small fluctuations in
centroid slopeswhile its angular divergence (along the bunch
length) remains roughly the same. The slope fluctuation
indicates the incomplete cancellation of the slopes due to the
offset evolution combined with the multipole fields—which
can be seen in Fig. 16(d) that the extended kick without

FIG. 15. The evolution of flat beam profiles at the cooler over 11 turns.
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multipoles is comparable to the impulsive kick (with the
multipoles, but relatively strong cancellation) in terms of the
slope fluctuations.

V. CONCLUSION

A harmonic kicker system for the CCR of the JLEIC is
designed satisfying all the requirements of beam dynamics
of the CCR. The kick is constructed out of the five odd
harmonic modes of kick frequency fk ¼ 86.6 MHz and
can be accommodated in a single QWR cavity. Similar to
Ref. [11], the residual kicks on the passing bunches are
canceled based on the betatron phase advance, while the
kicks on the exchanged bunches were made flat with PRK/
POKs. The baseline design was confirmed with a more
realistic kick model based on the rf simulation of the QWR
cavity, which includes nonuniform transverse profile and
longitudinally extended profile. Accordingly, the phase
advance cancellation scheme was modified to cancel the
effects of the multipole fields as well. The effects of a
harmonic kicker on the magnetized beam was studied with
a longitudinally extended kick model and we have

demonstrated that the degradation in terms of the
Larmor emittance is within our accepted tolerance. The
results were also benchmarked against the GPT simulations
that uses 3D field maps directly.

ACKNOWLEDGMENTS

The work is supported by Jefferson Science Associates,
LLC under U.S. DOE Contract No. DE-AC05-06OR23177.

APPENDIX: BENCHMARKING WITH GPT USING
3D FIELD MAPS

The simulation by ELEGANT and analytic computations
were benchmarked against GPT simulations. Due to the
inability of GPT to loop over the multiple passes and include
a transfer matrix as a beam line element, the comparison
was made only for a single pass through the kicker cavity.
For a fair comparison, the extended kick model with
multipoles was used in ELEGANT and analytic computations
and the dc magnet in ELEGANT—that would give an
additional kick—was removed.

FIG. 17. Benchmark of ELEGANT code and analytic computations against GPT. (a) x − y distribution. (b) x − x0 distribution. (c) x − y0
distribution. (d) y − x0 distribution.
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The benchmark results of ELEGANT and analytic com-
putations against GPT are shown in Fig. 17, where various
beam distributions are compared. In particular, the x − y
distributions in Fig. 17(a) are indistinguishable, confirming
the extended kick model closely approximates the actual
trajectory as realized by the GPT simulation. However, the
slope changes [common to x − x0 in Fig. 17(b) and y − x0 in
Fig. 17(d)] show a discrepancy on the order of a few tens of
μrad’s. This comes from the inaccuracy of evaluating the
multipole moments, discretization of the kick into N ¼ 27
impulsive kicks with drift spaces. The slope change in
Fig. 17(c) shows a much smaller change but shows a
blurred distribution from GPT. This also can be attributed to
the inaccurate evaluation of the multipole coefficients
(including skew multipoles). The benchmark in terms of
all the elements of the beam matrix is listed in Table V.
Overall, the numbers are close enough to one other,
suggesting that the multipole representation in an extended
kick model in the ELEGANT is reasonably good approxi-
mation to the 3D field maps—although whether these small
errors will stabilize or amplify after the multiple passes
remains to be investigated.
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