Compton Transmission Polarimeter for BNL SRF Gun

5 MeV Polarimeter

Riad Suleiman

Wednesday, February 10, 2021

July 10, 2018 Test at CEBAF Injector

Dalia Lucero Ramírez Guadarrama

Laser Table, Beamline & DAQ Schematics

Helicity Generator Signals

Test Setup

- Strained SupperLattice GaAs
- 780 nm, 50 ps, 250 MHz, Circularly polarized
- Insertable Half-wave-plate, IHWP: IN/OUT
- Beam Total Energy: 5.9 MeV
- Beam current: 0 3.5 μA
- Helicity Settings:
 - Clock: Free Clock
 - Delay: 0, 8 windows
 - Pattern: Quartet
 - Settle Time: 500 µs
 - Stable Time: 33330 µs
 - Frequency: 29.6 Hz

Compton Transmission Polarimeter

• Detector:

- Compton Transmission detector at -1.2 kV

• Magnet:

Jefferson Lab

Asymmetries

- Charge Asymmetry:
 - I^+ : Raw channel for +helicity
 - I^- : Raw channel for helicity

$$A_{BCM} = \frac{I^+ - I^-}{I^+ + I^-}$$

- Detector Asymmetry:
 - D^+ : Raw channel for +helicity
 - D^- : Raw channel for helicity

$$A_{Det} = \frac{D^{+} - D^{-}}{D^{+} + D^{-}}$$

Compton Transmission Asymmetry:

$$A_{Comp} = \frac{D^+/I^+ - D^-/I^-}{D^+/I^+ + D^-/I^-} = A_{Det} - A_{BCM}$$

Raw Signals vs Beam Current

Talk Title Here

Raw Signals and Asymmetries – Run 8823

hh3

4995

24.5

221.4

14.43

5.024

1240 2.249

0.2344

22.85 / 14

 221.6 ± 8.1

5

4.5

Talk Title Here

Charge Asymmetry

• Beam current: 1.7 µA

Detector Asymmetry vs Run Number

- Beam current: 1.7 µA
- Magnet Current: -4 4 Amps

Compton Transmission Asymmetry vs Run Number

- Beam current: 1.7 µA
- Magnet Current: -4 4 Amps

Compton Asymmetry vs Magnet Current

 Average Compton Transmission Asymmetry: (OUT – IN/)/2

Compton Asymmetry vs Horizontal Wien Angle

- Beam current: 1.7 µA
- Magnet Current: +1 Amps

Compton Asymmetry vs Beam Current

• Magnet Current: +1 Amps

Compton Asymmetry Width and Detector Rate

• Magnet Current:

Detector Rate (if width only statistical): $R = \frac{1}{4 \times 0.0333 * 0.002344^2}$ ~1.4 MHz

Design of BNL Compton Transmission Polarimeter

GEANT4 Optimization

• Include Polarized Physics:

Particle	Process Name	Class Name (GEANT4)
Electron	Multiple Scattering	G4eMultipleScattering
	Discrete and Continuous Energy Loss	G4ePolarizedIonisation
	Bremsstrahlung	G4ePolarizedBremsstrahlung
Positron	Multiple Scattering	G4eMultipleScattering
	Discrete and Continuous Energy Loss	G4ePolarizedIonisation
	Bremsstrahlung	G4ePolarizedBremsstrahlung
	Annihilation	G4eplusPolarizedAnnihilation
Gamma	Photoelectric Effect	G4PolarizedPhotoElectricEffect
	Compton Scattering	G4PolarizedCompton
	Gamma Conversion	G4PolarizedGammaConversion

• Goal: maximize Figure-pf merit: $fom(E_b, T_{radiator}L_{magnet}, L_{detector} \dots) = A_p^2 \times N$ where *N* is number of gammas in detector

New Portable DAQ

• DAQ capable of :

•

- Integrating two signals: PMT, BCM
- Handling helicity signals

- Laser:
 - IHWP
 - Control of Pockels Cell HV switch will provide 5V TTL helicity signal
 - No requirement on pulse width

- Electron Beam:
 - Beam Current: ~µAs ?
 - Beam Energy: 5 9 MeV ?
 - Beam Frequency: > 1MHz ?
 - Need full schematic of beamline
 - Expected location of polarimeter
 - Is there any possibility to measure beam energy ?

BNL Beamline

Radiator

Wednesday, February 10, 2021

