LDRD: Magnetized Source

JLEIC Meeting November 20, 2015

Riad Suleiman and Matt Poelker

Outline

- Magnetized Cooling
- Magnetized Bunched Electron Beam Requirements
- Magnetized Guns
- JLEIC Magnetized Gun R&D
- Experimental Overview
 - Simulation Plan
 - Measurement Plan
- Progress

Magnetized Cooling

- JLEIC bunched magnetized electron cooler is part of Collider Ring and aims to maintain ion beam emittance and extend luminosity lifetime
- Electrons helical motion in strong magnetic field increases electron-ion interaction time, thereby significantly improving cooling efficiency. Electron-ion collisions that occur over many cyclotron oscillations and at distances larger than cyclotron radius are insensitive to electrons transverse velocity.
- Cooling rates are determined by electron longitudinal energy spread rather than electron beam transverse emittance as transverse motion of electrons is quenched by magnetic field
- This cyclotron motion also provides suppression of electronion recombination
 3

Electron beam is being used inside cooling solenoid where it suffers an azimuthal kick when it enters. This kick is cancelled by an earlier kick at exit of cathode solenoid

Magnetized Bunched Electron Beam Requirements

Bunch length	100 ps (3 cm)
Repetition rate	476 MHz
Bunch charge	420 pC
Peak current	4.2 A
Average current	200 mA
Transverse normalized emittance	10s microns
Emitting radius (a_0)	3 mm
Solenoid field at cathode (B _z)	2 kG

Magnetized Guns

- 1. Fermilab Photoinjector Laboratory:
 - Pulsed NCRF gun
 - Cs_2 Te photocathode and UV laser (λ =263 nm)
 - Bunch charge: 0.5 nC and bunch length: 3 ps
 - 0.5% duty factor (average current: 7.5 μA)
 - Bunch frequency: 3 MHz
 - Macropulse duration: 1 ms
 - Number of bunches per macropulse: 3000
 - Macropulse frequency: 5 Hz

> No CW beam at high average current

6

2. Magnetized beam R&D at University Mainz just started

JLEIC Magnetized Gun R&D

- Generate magnetized electron beam and measure its properties
- Explore impact of cathode solenoid on photogun operation
- Simulations and measurements will provide insights on ways to optimize JLEIC electron cooler and help design appropriate electron source
- JLab will have direct experience magnetizing high current electron beam

Helmholtz pair would be easier to mount on HV Chamber

Experimental Overview

Simulation Plan

- 1. Design beamline to locate magnets and diagnostics at optimum positions
- 2. Benchmark simulation (of different operating scenarios of bunch charge, magnetization, bunch shape etc.) against measurements
- Quantify how good or complete RTFB transform can be made for different settings – as beams will be space charge dominated, there will be some limit to emittance aspect ratio that can be achieved
- These results will guide injector design for JLEIC magnetized electron cooler

Measurement Plan

- Measure mechanical angular momentum (skew quads off)
- σ_1 beam radius measured at Diagnostic Cross 1
- $\sigma_{\scriptscriptstyle 2}$ beam radius measured at Diagnostic Cross 2
- D drift between two crosses
- p_z beam longitudinal momentum

$$\langle L \rangle = 2p_z \frac{\sigma_1 \sigma_2 \sin \phi}{D} = eB_z a_o^2$$

Drift

Distance D

Angular rotation φ is measured from beam image at Cross 2 when multislit is inserted at Cross 1

Example of mechanical measurement at Fermilab (Piot et al.)

50 100 150 200 x (arb. units)

10

Ρ

r,

2. Use three skew quads – RTFB Transformer – to generate a flat beam with transverse emittance ratios of:

$$\frac{\varepsilon_x^n}{\varepsilon_y^n} >> 1$$

Measure horizontal and vertical emittances using slit method

- 3. Generate very high currents magnetized beam and study beam transport and RTFB transformation versus electron bunch charge
- Measure photocathode lifetime versus solenoid field at high currents (up to 32 mA) and high voltages (200 – 350 kV) limited by in-house HV supplies
- 5. Study beam halo and beam loss versus magnetization

Location of Work: LERF Gun Test Stand

Progress

• HV conditioning: reached 292 kV on November 18, 2015

HV Chamber