Solenoid

Sami Habet

IJCLab.
Jefferson Laboratory.

September 2022

Jefferson Lab

Magnetic profile along the solenoid

$$
\begin{aligned}
& B_{z}=\frac{1}{2} \mu_{0}\left[\frac{z+\frac{1}{2} L}{\left[\left(z+\frac{1}{2} L\right)^{2}+R^{2}\right]^{\frac{1}{2}}} \frac{z-\frac{1}{2} L}{\left[\left(z-\frac{1}{2} L\right)^{2}+R^{2}\right]^{\frac{1}{2}}}\right] n / \\
& B_{r}=\frac{d B_{z}}{d z} \\
& B_{r}=-\frac{R}{4} \mu_{0}\left[\frac{1}{\left[\left(z+\frac{1}{2} L\right)^{2}+R^{2}\right]^{\frac{3}{2}}}-\frac{1}{\left[\left(z-\frac{1}{2} L\right)^{2}+R^{2}\right]^{\frac{3}{2}}}\right] n / R^{2}
\end{aligned}
$$

- L: solenoid length
- $B_{0}=\mu_{0} n l$: Magnetic field peak
- nl : Ampere turn per meter
- R : Solenoid radius

At the entrance of the solenoid

- We assume a particle with :
- $P_{x}=0$ and $P_{y}=0$
- $P=P_{z}$
- The radial coordinate : $r=r_{0} \cos \frac{\omega_{L} z}{v_{z}}$
- The azimuthal coordinate : $\theta=\theta_{0}+\frac{\omega_{L} z}{v_{z}}$
- Where :
- θ_{0} Initital azimuthal coordinate.
- r_{0} Initial radial coordinate
- $\omega_{L}=\frac{e B_{0}}{2 \gamma m}$ is the Larmour frequency
- Lorentz force $\vec{F}_{\text {Lorentz }}=q \vec{v} \times \vec{B}$
- $v_{r}=\frac{d r}{d t}$ and using $\dot{v}=\frac{d \vec{r}}{d t}=\dot{r} \overrightarrow{e r}+r \dot{\theta} \overrightarrow{e_{\theta}}+\dot{z} \overrightarrow{e_{z}}$ in cylindrical coordinates we get:

$$
\begin{aligned}
& v_{r}=-r \omega_{L} \tan \left(\frac{\omega_{L} z}{v_{z}}\right) \\
& v_{\theta}=r \omega_{L}
\end{aligned}
$$

At the exit of the solenoid

- At the exit edge of the solenoid $B_{r} \neq 0 \longrightarrow \overrightarrow{F_{\theta}}$
- $\Delta v_{\theta}=-r_{1} \omega_{L}$
- r_{1} is the radial coordinate at the exit of the solenoid.

$$
\begin{aligned}
\Delta v_{\theta} & =-r_{1} \omega_{L} \\
\Delta v_{\theta} & =v_{\theta_{\text {final }}}-v_{\theta_{\text {initial }}} \\
-r_{1} \omega_{L} & =v_{\theta_{\text {final }}}-r_{1} \omega_{L} \\
v_{\theta_{\text {final }}} & =0
\end{aligned}
$$

- The only component left is the radial velocity : $v_{r}=-r_{1} \omega_{L} \tan \left(\frac{\omega_{L} z}{v_{z}}\right)$

Thin lens approxiamtion

- $L \leq \frac{v_{z}}{\omega_{L}}$ we end up with :

$$
v_{r} \cong-r_{1} \omega_{L} \frac{\frac{\omega_{L} L}{v_{z}}}{1-\frac{\omega_{L}^{2} L^{2}}{v_{z}^{2}}}
$$

- We simplify the previous equation we get :

$$
v_{r}=-\frac{r_{0} e^{2}}{4 \gamma^{2} m^{2} v_{z}} B_{0}^{2} L
$$

- For a random variation of B_{z} we can write:

$$
v_{r}=-\frac{r e^{2}}{4 \gamma^{2} m^{2} v_{z}} \int B^{2} d z
$$

Focal length

- The focal length is expressed by this relation :

$$
\frac{1}{f}=-\frac{r^{\prime}}{r}
$$

- From the previous formula, we can re-write:

$$
\frac{1}{f}=\frac{e^{2}}{4 \gamma^{2} m^{2} v_{z}^{2}} \int B^{2} d z
$$

Magnetic profile

- Using the following solenoid parameters:
- $L=0.334 \mathrm{~m}$
- $R=0.07 \mathrm{~m}$
- $B_{0}=1.54 T$

Jefferson Lab

Solenoid simulation

- The following formula describes the focal length: $\frac{1}{f}=\left[\frac{e}{2 \gamma \beta m c}\right]^{2} \times \int_{0}^{L} B^{2} d z$ which equivalent to $\frac{1}{f}=\left[\frac{e}{2 P}\right]^{2} \times \int_{0}^{L} B^{2} d z$
- Where P is the particle momentum, which is set at $P=60[\mathrm{MeV} / \mathrm{c}]$, we get $f=0.29 \mathrm{~m}$.
- center of lens: 0.245 m
- distance source-solenoid 0.08 m
- The beam should be focalized at $z_{f}=0.08+0.245+0.29=0.61 \mathrm{~m}$

GPT VS ELEGANT

$\mathrm{X}[\mathrm{m}]$ vs $\mathrm{z}[\mathrm{m}]$

Spin Tracking

- Let's consider a particle with the folowing spin coordinates:
- $S x=0$
- $\mathrm{Sy}=1$
- $\mathrm{Sz}=0$
- Using the same solenoid, the angle of rotation of the spin vector is given by:

$$
\theta=\frac{180}{\pi} \frac{e}{m} \frac{L_{\text {eff }}}{\beta c}\left[\frac{1}{\gamma(1+\alpha)} B\right]
$$

- Where :
- $L_{\text {eff }}$ is the solenoid length.
- $\beta=\frac{v}{c}$
- γ is the Lorentz factor
- B is the parrallel component of the magnetic field to the direction of the spin.
- $\alpha=\frac{g}{2}-1$ is the magnetic moment.

Spin Tracking

- For $L_{e} f f=10 \mathrm{~cm}$ and $B=0.02 T, \beta=0.7$, and $\gamma=1.39$, we get $\theta=90$ degree precession of spin.
- Using an hard edge model to check the GPT's results :

Spin Tracking

Spinx vs z [m]

Jefferson Lab

Conclusion

- Prediction of the focal length distance along a solenoid
- The radial magnetic field has a strong effect on the rotation of the particle in the azimuthal direction
- Results obtained from GPT and ELEGANT are similar
- The spin tracking in GPT match with the analytical predictions

