
Josh Yoskowitz
How to use GPT on the JLab iFarm

1 Intro

Creating many GPT simulations on a single desktop PC can be tedious and time consuming. The advantage of running
GPT on the farm is that you can create many GPT simulations in parallel instead of in series, which can save countless hours
(assuming you know what you are doing). The documentation below of basic instructions on how to run GPT simulations
on the farm is the culmination of countless hours and countless Advil and countless questions asked to countless people and
countless times I've screwed up and had to start all over. I assume that you are either a grad student or an employee looking
to use the farm to speed up your GPT simulations. I also assume (and hope) that you have a decent amount of experience
with GPT and some experience with Unix shells to understand the example I give below. I hope the below documentation
proves useful to you and your research...at least it's much better than the online documentation.

2 Step 1: Are you sure you know what you're doing?

There are countless ways to run on the farm and not get what you want. There are even more ways to have some
interesting syntax error that prevents GPT from even running in the �rst place. Thus, be sure that, at the very least, one
of your GPT simulations runs to completion on one of the JLab machines (such as jlabl1), not just your desktop PC. Try
running a simulation on jlabl1. If you get any errors at this point, it's better to deal with them here than on the farm. If it
works smoothly, you're most likely good to go......we'll see.

Note that in order to run GPT on jlabl1, you'll need to know how to use GPT on a Unix machine (i.e. with a terminal
interface). If you don't have access to a JLab Linux workstation (like an accelerator computer) and mainly use a Windows
PC like I do, you can try logging onto jlabl1 using PuTTY (see https://cc.jlab.org/windows/remotedesktop You'll only need
to do �Stage 1�). Once you've logged into login.jlab.org, you can type �ssh jlabl1� and enter your CUE password to log onto
jlabl1. Be sure that all of your simulation �les (i.e. your input �le and �eldmap �les) are in an easily accessible place on your
J:\ drive on JLab Windows machines (or /u/home/<username>/ directory on Linux machines). You can then try running
GPT on jlabl1 using your simulation �les.

3 Step 2: Are you sure you're allowed?

Once you have a working GPT simulation, the �rst step to running on the farm is to gain access to the farm. If you don't
already have access, you'll need to ask your supervisor about getting access to the farm. In order to use the farm, you need
to be a part of one of the groups that is �allowed� to use the farm. I'm in the group called �inj_group�, which is an allowed
group for using the farm. Note that this has nothing to do with whether or not you are allowed to use the farm (Of course
you are!), it's to make sure that the farm is only used by those who are authorized to use it (Of course you are, too!). To see
what groups you are in, type �groups <your CUE username>� in any JLab terminal.

4 Step 3: Are you even ready?

Once you get access to the farm, you'll need to create an Auger command (batch) �le. Auger is the software that manages
batch �les that are sent to the JLab farm computers to run your jobs. Basically what you'll do is to create a batch �le where
you'll provide info about your project and what kind of jobs you'd like to run on the farm. Auger will then take that info
and send out your jobs to the farm computers (one job per computer). The jobs will be added to the queue with a certain
priority (I wouldn't worry about this if you're just starting out. If I were you, I'd be ecstatic if your simulations successfully
run on the farm period, regardless of when they actually run.) Once your simulations have �nished (successful or not), Auger
will then copy the resulting data �le(s) back to your directory before deleting them on the farm computer(s).

There are two formats of Auger batch �les that you can choose from: one of which you can use and one of which you're
gonna use. I'll show how to create the latter below:

1

4.1 Creating an Auger XML batch �le

The xml �le consists of two main parts: one for global speci�cations and one for job speci�c speci�cations. To illustrate
what each of these sections are and to understand the syntax, I'll show you an example xml batch �le below:

<Request>
<Email emai l="yoskowi j@j lab . org " reque s t="true " job="true"/>
<Pro j e c t name="inj_group"/>
<Track name="t e s t "/>
<Name name="GPT_testrun"/>
<TimeLimit time="10"/>
<Memory space="600" un i t="MB"/>

<Job>
<Stdout dest="/u/group/ inj_group/ yoskowi j /GPT_Farm_Files/ stdout / stdout_1 . txt"/>
<Stderr des t="/u/group/ inj_group/ yoskowi j /GPT_Farm_Files/ s t d e r r / stderr_1 . txt"/>
<Command>

use gpt
setenv OMP_WAIT_POLICY PASSIVE
cp /u/group/ inj_group/ yoskowi j /GPT_Farm_Files/ resu l t_100 . gdf
gpt −j 2 −o f i l ename1 . gdf T−Gun_Farm. in eN=10000 eKEmax=100

</Command>
<Output s r c="f i l ename1 . gdf " des t="/u/group/ inj_group/ yoskowi j /GPT_Farm_Files/ resu l t_100 . gdf"/>
</Job>
<Job>

<Stdout dest="/u/group/ inj_group/ yoskowi j /GPT_Farm_Files/ stdout / stdout_2 . txt"/>
<Stderr des t="/u/group/ inj_group/ yoskowi j /GPT_Farm_Files/ s t d e r r / stderr_2 . txt"/>
<Command>

use gpt
setenv OMP_WAIT_POLICY PASSIVE
cp /u/group/ inj_group/ yoskowi j /GPT_Farm_Files/ resu l t_200 . gdf
gpt −j 2 −o f i l ename1 . gdf T−Gun_Farm. in eN=10000 eKEmax=200

</Command>
<Output s r c="f i l ename1 . gdf " des t="/u/group/ inj_group/ yoskowi j /GPT_Farm_Files/ resu l t_200 . gdf"/>
</Job>

</Request>

4.1.1 Global Speci�cations

Everything above <Command> are global speci�cations. They apply to all jobs sent to the farm. Some notes about each
line:

• The <Email> command will tell Auger to email you when the job is completed and tell you whether or not it was
successful. It emails the address speci�ed in quotes.

• The <Project> command speci�es what project your jobs are a part of, assuming it's an allowed project. You can
input your project within the quotes. This is a required command.

• The <Track> command speci�es the type of jobs you are running (see https://scicomp.jlab.org/docs/batch_job_tracks).
If you are just starting out, I'd recommend using either the �test� or �debug� tracks. Once you know that your jobs
will run smoothly on the farm, you can choose one of the other tracks. This is a required command.

• The <Name> command gives your jobs a name so that you can refer to these jobs after they are completed. You can
name your jobs whatever you want, so long as you can refer to them easily. This is a required command.

2

• The <TimeLimit> command, as its name suggests, gives a time limit to your jobs. This is useful, as you don't want
you jobs to hang on the farm and run forever. You can specify a value and its unit. If you don't specify a unit, the
default is minutes. For example, to specify 30 minutes, you can use any of the following: <TimeLimit time=�30�/>,
<TimeLimit time=�30� unit=�minutes�/>, <TimeLimit time=�0.5� unit=�hours�/> .

• The <Memory>, as its name suggests, speci�es the memory usage limit of your jobs. If you're just starting out, this
should not be a problem, but it may become a concern for larger simulations. To see if you should be concerned about
memory usage, try creating your GPT simulation on a Windows PC and use Task Manager to see how much memory
GPT uses. From there, you can choose a reasonable memory limit for your simulations. You obviously don't want to
use too much memory, as it would be unfair to everyone else using the farm.

For more info on the various speci�cations, refer to https://scicomp.jlab.org/docs/desc_xml_tags.

4.1.2 Global Commands vs Job Commands

Between <Command> and </Command> are the commands you give to a JLab farm computer, just as you would in
Terminal. Which computers receive which commands depends on where the command is speci�ed in the xml �le. One option
is to put the command speci�cations before the job speci�cations. In this case, the commands you specify are global, meaning
that all jobs run these commands (i.e. each farm computer you use runs the same commands). Another option, as I have
shown in the example, is to specify commands within the job speci�cations themselves. In this case, whatever commands
you specify only run for a speci�c job (and no other job). Note that if you have both global and job-speci�c commands the
job-speci�c commands overwrite all global commands. (This is why the command �use gpt� is written for each job instead
of having it as a global command, as the job-speci�c commands would otherwise overwrite it).

The �rst line tells the farm computer you'd like to run GPT (speci�cally it adds the license number to your environment
variables so that you have �permission� to run GPT). You are required to have at least one command in your xml �le in
order to run your job (obviously...).

The second line sets an irrelevant environment variable to passive. If you don't do this, you'll get some warning along the
lines of �Warning: Environment variable OMP_WAIT_POLICY=PASSIVE not set,� which is strange because the default
value is passive! This environment variable luckily won't a�ect your simulations...I just want to reduce the chance that an
error, no matter how trivial, screws up my simulations.

The third line copies your simulation �les onto each farm computer that you're using (Remember that test run on jlabl1
from Step 1 above?) The directory speci�ed in this command is where you have all of your GPT simulation �les saved (input
�le, �eldmap �les, etc.). The �*� means copy all simulation �les in this folder and the �.� after it means �copy it here�, �here�
meaning to the farm computer. If you do not do this, the farm computer will have no �les to run your simulations on and
you will receive a blank data �le (This happened to me many times. Don't be like me!). Note that these �les are deleted
after your run, so you have to use this command every time you submit your job.

The fourth line is the familiar GPT command line used to run a GPT simulation. I recommend setting the number of
cores each GPT simulation uses using the -j option, just for simulation stability reasons. In my case, I am using 2 cores. I
specify a di�erent output �le name within each GPT command (�lename1.gdf, �lename2.gdf, etc.). You don't technically
have to do this...I'm just doing this to be safe. After specifying the input �le, each job has di�erent values for two variables
used in the input �le. In this case, the number of particles is �xed at 10000 (it could be di�erent, though) and each job has
its own speci�cation for the (maximum) electron energy. I'd recommend specifying variables that you'd like to vary between
jobs within this GPT command line instead of creating di�erent input �les for each simulation. (This would obviously be
much less tedious if GPT were allowed to talk to Auger, in which case one can use an MR �le together with MPIRUN to scan
through a set of variables and send out each job to farm computers using one command line instead of many job-speci�cation
lines. Of course, we can't ALL have nice things...)

4.1.3 Job Speci�cations

The next few lines specify each job that you'd like to run on the farm. In this example, I'm running a simulation of 10000
electrons at the T-Gun for two di�erent electron energies (in this case, 100keV and 200keV). Each job is speci�ed in the xml
�le between the two tags <Job> and </Job>. Any commands that you put in between these two tags gives speci�cations
for that job only.

The �rst two lines in each job-speci�cation are specifying where the standard output and standard error (stdout & stderr)
texts are written. I highly recommend you include these for each job, as this is (to my knowledge), the only way to know

3

for certain whether or not your GPT run has completed successfully. Any errors that would normally be given in the output
window in GPTwin are written to stderr. Be sure to give di�erent names for your stdout and stderr �les for each job so that
you can di�erentiate them.

The next few lines between <Command> and </Command> are the commands given for each job, which are described
in the previous section.

Each job also has an <Output> command that allows you to name the resulting GDF data �le and give it a destination
(outside of the farm computer). Note that in the GPT command line, I've speci�ed the output �le as ��lename1.gdf� or
��lename2.gdf�. This is really a dummy name that will be changed by the <Output> commands. Each output command
takes the �le name and puts it in the speci�ed directory with the speci�ed name. What this means is that even though the
GPT command line tells each farm computer to call its subsequent GDF �le the same name (in this case �lename.gdf), these
GDF data�les get returned to me by Auger under the names that I specify in the <Output> command, which is how I can
distinguish them. Thus, it doesn't really matter what you call the result �le in the GPT command line.

Of course, you can run as many jobs as you'd like/need by including more jobs in the xml �le. If the number of jobs
is on the order of, say, more than 10, I'd recommend using ForEach, which will use a For loop to create many jobs (see
https://scicomp.jlab.org/docs/xml_command_�le for more info on this). Obviously I wouldn't start here, but once you get
the hang of running simple jobs on the farm, you can try using ForEach to simplify your xml �le instead of explicitly writing
many job commands. It'll take some clever thinking and exact knowledge of what you're doing, but it's better and much less
tedious to do this than to write hundreds of lines in your xml �le. for hundreds of jobs.

One last note: make sure your job speci�cations and global speci�cations are within the <Request> and </Request>
tags. This is important, as your xml �le won't get sent to the farm without it.

5 Step 4: Well, we'll see if you're ready

Once you've created your xml �le, put it in the same place as your simulation �les. Now you are ready to test run your
simulations on the farm. First, log onto any JLab computer (either using a terminal on a JLab Linux workstation or using
PuTTY on Windows machines). If you use PuTTY, you'll start by logging on to login.jlab.org with your JLab CUE username
and password. Once you are logged into a JLab computer, type

ssh i farm . j l a b . org

and enter your password (again!). This will log you into one of the two interactive nodes: either ifarm1401 or ifarm1402 (it
doesn't matter which one you use). You'll have access to all network drives that you would normally have on a Windows
machine, except that they'll have di�erent names (see https://cc.jlab.org/desktopsupport for more info). If this is your �rst
time running on the farm, you need to get a network certi�cate by typing in:

/ s i t e / bin / j c e r t −c r e a t e

From here, if you haven't already done so, go to your folder on your project's directory here:

/u/group/<projectname>/<yourname>/

Create a folder for your farm simulation �les and copy them there along with the xml �le you've created. Once you've double
checked your xml �le for typos, you can submit your xml �le to the farm by typing in

j sub −xml <f i l ename>

Your xml �le will then be parsed. If successful, it will return your job number and your batch will be submitted to the farm.
If there are any syntax errors in your xml �le, it will let you know then. What it will NOT do is tell you any errors or
warnings that GPT gives (like it would in the output window of your GPT batch �le when run on Windows or within the
terminal environment on Linux machines or PuTTY). Thus, it is very important that you are absolutely sure that your GPT
program will run correctly and without any non-trivial errors or warnings.

6 Step 5: Thought so...

If you've successfully created an xml �le, sent multiple jobs to the farm and got back non-empty data�les, then congrats!
You've done it! You are ready to use the farm. From here, I'd recommend reading https://scicomp.jlab.org/docs/desc_xml_tags
to help you customize your xml �le. If you can submit a successful job to the farm, you should be able to �gure out the rest
to meet your needs. Good luck!

4

