PQB

Photocathode Analyzing Power Study

May 19, 2009

GaAs Analyzing Power

The GaAs crystal has preferred axis for absorption of linearly polarized light, <u>Linear Dichroism (LD):</u> difference in absorption of light polarized parallel and perpendicular to an orientation axis (Phys. Lett. A 212, 231 (1996))

Circular Dichroism (CD): difference in absorption of left- and right-handed circularly polarized light. CD is zero for GaAs.

Measure the super-lattice photo-cathode analyzing power (QE anisotropy), turn off Pockels Cell (PC) and do a Rotatable Half Wave Plate angle (θ) scan:

Not Perfect Circular Polarization?

Residual linear polarization causes charge asymmetry when coupled to photocathode analyzing power

Measure the charge asymmetry (turn on Pockels Cell and do a RHWP scan)

RHWP Scans

$$A_{q} = A_{y} [c_{0} + c_{1} \sin(2\theta + \phi_{1}) + c_{2} \sin(4\theta + \phi_{2})]$$

Term	Caused by
c_0	Vacuum Window Phase Shift
<i>C</i> ₁	RHWP Phase Shift
<i>C</i> ₂	Pockels Cell Residual Phase Shift & Imperfect Initial Linear Polarization

Did RHWP Scans with:

- I. Insertable Half-Wave Plate: IHWP IN or IHWP OUT
- II. Insertable Linear Polarizer: ILP IN or ILP OUT
 - I. ILP OUT: Spot 900/900
 - II. ILP IN: Spot 850/800, to run from same spot as OUT; ILP moved the beam by about 2 mm
- III. Pockels Cell HV set for maximum circular polarization (PITA = 0 V) or set for elliptical polarization (PITA = -120 V)

Run 689, PITA = 0, IHWP OUT, ILP OUT, QWK_1102

Run 690, PITA = -120, IHWP OUT, ILP OUT, QWK_1102

Run 691, PITA = 0, IHWP IN, ILP OUT, QWK_1102

Run 692, PITA = -120, IHWP IN, ILP OUT, QWK_1102

Run 693, PITA = 0, IHWP IN, ILP IN, QWK_1102

Run 694, PITA = -120, IHWP IN, ILP IN, QWK_1102

Run 695, PITA = 0, IHWP OUT, ILP IN, QWK_1102

Run 696, PITA = -120, IHWP OUT, ILP IN, QWK_1102

Summary of RHWP Scans

- IHHWP IN → IHWP OUT: $A_q \rightarrow -A_q$
 - IHWP does not cancel helicity correlated effects caused by residual linear polarization

- ILP has small effect
 - The initial polarization is highly linear
 - Because of the way the three laser beams are combined,
 ILP can only be used during beam studies

- How to zero charge asymmetry?
 - ▶ Use c_2 to compensate for offset term <u>or</u>
 - Zero offset term by rotating photocathode

Photocathode Rotation

- > Measure Offset term (c_0) as a function of photocathode angle (θ_c)
- Choose angle where Offset is zero

Why use IHWP?

- > IHWP cancels helicity-correlated changes due to:
 - 1. Position differences caused by Pockels Cell steering
 - PC alternately pulsed to +HV and -HV to change from right to left circularly polarized light and vice-versa
 - PC behaves alternately as converging and diverging lens
 - o If beam is off-center, it can be steered
 - Induces helicity-correlated position differences

2. Electronic cross talk