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1 Purpose

To derive an equation for the net force on an ion between the electric �eld from the biased anode and the magnetic �eld
from the magnetizing solenoid. The resulting equation should be useful in determining the conditions for the ion to become
trapped.

2 Derivation

We start with the experimental setup as shown below in Figure 1 below:

Figure 1: Diagram of an ion between the biased anode (left) and magnetizing solenoid (right).

We can setup a coordinate system with the z-axis going through the center of the anode and solenoid as shown in the
�gure. We'll start the derivation with two reasonable assumptions. First, we'll assume that anode is approximately a uniform
charged disk of negligible thickness. Second, we'll assume that the ion is on the z-axis in order to simplify our derivations.
In reality, the ion orbits the z-axis at some distance r. However, this distance is negligible compared to the radii of the anode
and solenoid. Later, we'll consider how r grows with time and how valid this assumption becomes.

We'll start with the electric �eld from the anode. The electric �eld on the central axis (in this case, the z-axis) of a
uniform disk of radius Ranode and surface charge density σ is given by:

~Eanode =
1

4πε0

w σ (r′)

|~r − ~r′|3
(~r − ~r′) d2r′ (1)

where ~r = zẑ denotes the location of the ion (in this case, along the z-axis) and ~r′ = r′r̂ = r′ cos θx̂ + r′ sin θŷ denotes the
location of an element of surface charge on the anode. Note that by assumption, σ is constant and can be taken out of the
integral. Thus,
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(z2 + r′2)

3
2

r′dr′dθ (2)

Note that
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sin θdθ = 0, so only the term with ẑ survives (as expected):
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Let u = z2 + r′2. Then du = 2r′dr′ → 1
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2ε0

(
−u− 1

2

)
→ σzẑ
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The electric (Coulomb) force on an ion with charge q is given by
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)
ẑ (4)

We can now derive an equation for the magnetic �eld from the magnetizing solenoid. Since the solenoid is symmetric
about the z-axis, the magnetic �eld will only depend on r and z:

~B = Br r̂ +Bz ẑ

Br can be derived from ∇ · ~B = 0 in cylindrical coordinates:
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If we assume that
∂Bz
∂z

at r = 0 is known (de�ned) and does not change signi�cantly in r, then we can assume to good

approximation that it is constant and can be taken out of the integral:
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The magnetic force on a particle with charge q and moving with velocity ~v is

~F = q~v × ~B

= q
[
(vθBz − vzBθ) r̂ − (vrBz − vzBr) θ̂ + (vrBθ − vθBr) ẑ

]
Since Bθ = 0 by symmetry,

~F = q
[
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]
(6)

We are mainly concerned with Fz. Using (5), we have:
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Averaging over one Larmor period, we have

Fz,avg = ∓
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where we use the minus sign for positive ions. In order to determine
∂Bz
∂z

, we assume that the solenoid is thin compared to

its length l (i.e. Rsol � l). In this case, the solenoid �looks like� a circular wire (or really N overlapping circular wires if
the solenoid has N turns) of radius Rsol carrying current I. In this case, we can use the Biot-Savart law to determine the
magnetic �eld:
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where ~s = ~r−~r′. Since the ion is on the z-axis, we only need to consider the z component of ~B. All other components cancel
out. Thus,
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where θ is the angle between ~s and ~r′. Thus, cos θ =
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For a solenoid of N turns, we have
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Taking a partial derivative with respect to z:
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Plugging this into (7) yields:
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It is important to distinguish between the meaning of z in eqs. (4) and (11). In eq. (4), z is the distance along the z-axis
from the center of the anode. In (11), it is the distance along the z-axis from the center of the solenoid. To be consistent
with the experimental setup, let the origin (z = 0) be at the midpoint between the centers of the anode and solenoid such
that the anode is positioned at z = −l and the solenoid is at z = +l. With this setup, we can de�ne the net force,
~Fnet = ~Fanode + ~Fsolenoid, below
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where we have condensed the constants into Canode =
qσ

2ε0
and Csol = (3qrLv⊥)

(µ0

4π

)
(AsolNI). To get a sense of what ~Fnet

looks like, we can sketch it using Mathematica with Canode = Csol = l = 1 and Rsol = 2Ranode:

Figure 2: A sketch of the net force ~Fnet as a function of z.

This plot should obviously be taken with a grain of salt: we would need to plug in realistic numbers for all of the constants
to get a more accurate picture. That is, we need to know:
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• Surface charge density of the anode σ

• Radii of the anode and solenoid Ranode and Rsol

• Distance between anode and solenoid 2l (known)

• Estimates for the larmor radius and angular (perpendicular) velocity rL and v⊥

• Cross-Sectional Area of the solenoid Asol (derived from Rsol)

• Number of turns of the solenoid N (known)

• Solenoidal current I (known)

• Constants q (+e for ions), ε0, and µ0/4π (all are known)
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