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Round-to-flat transformation of angular-momentum-dominated beams
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A study of round-to-flat configurations, and vice versa, of angular-momentum-dominated beams is
presented. The beam propagation in an axial magnetic field is described in terms of the familiar
Courant-Snyder formalism by using a rotating coordinate system. The discussion of the beam trans-
formation is based on the general properties of a cylindrically symmetric beam matrix and the existence
of two invariants for a symplectic transformation in 4D phase space.

DOI: 10.1103/PhysRevSTAB.6.104002

L. INTRODUCTION

Derbenev noted that the beam in transverse dimensions
can be transformed from round to flat, or vice versa, by
removing the correlation between the transverse degrees
of freedom of an angular-momentum-dominated beam
produced in an axial magnetic field [1]. Such a trans-
formation may have applications for future linear col-
liders [2] or for the ultrafast x-ray generation [3]. The
round-to-flat transformation has been experimentally
demonstrated recently [4].

The fact that an initially round beam with a net angular
momentum can be transformed to a beam asymmetric in
transverse beam dimensions was first analyzed and ex-
perimentally demonstrated already in 1987 by a group
working on ECR sources [5]. In this work, angular-
momentum-dominated round beams were generated in
an axial magnetic field and passed through a single
quadrupole. The transverse dimensions of the beams
then exhibit a large aspect ratio at a certain distance
downstream. However, the correlation removal in this
case is partial and transitory since only the correlation
between the two transverse coordinates vanishes at a
particular location. On the other hand, the Derbenev
scheme, which requires at least three quadrupoles,
achieves a complete removal of the correlation between
the phase-space variables of two transverse dimensions.
The resulting beams can then be characterized by two
decoupled betatron motions with respective emittances.

The general theoretical framework for round-to-flat
transformation was developed in Refs. [6,7]. The analyses
in these papers are based on new sets of canonical vari-
ables—the guiding center variables in [6] and the coor-
dinates for circular modes in [7]. The reason for
introducing new variables appears to be the fact that the
usual Cartesian canonical variables in the laboratory
frame are not convenient to describe the helical motion
occurring in angular-momentum-dominated beams.
Although the formalisms involving the new variables in
these papers are quite elegant, they are nevertheless not as
straightforward as the familiar Courant-Snyder formal-
ism based on the Cartesian coordinate system [8]. One of
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the two goals of this paper is to emphasize the well-
known fact that the force due to an axial magnetic field
in the laboratory frame appears as the force due to an
axially symmetric, linearly focusing lens if viewed from
a rotating coordinate frame [9,10]. The motion in the
rotating frame, known as the Larmor frame, can be
conveniently described in terms of the Cartesian canoni-
cal variables.

The second goal of this paper is to note that the dis-
cussion of the round-to-flat transformation can be greatly
simplified by making use of two invariants of the beam
matrix under symplectic transformation in 4D phase
space. The first of these invariants, the volume of the
4D phase space, is well known as the 4D emittance.
The second invariant is a trace of a combination of the
beam matrix, first introduced in this form by Rangarajan
et al. [11].

This paper is pedagogical in the sense that it is about
the method of derivation rather than the results, which
have been derived in previous papers, most extensively in
Ref. [7]. Section II is a review of some general properties
of a symplectic transformation in 4D phase space, in
particular, the existence of two invariants. Section III
presents a study of the general properties of a cylindri-
cally symmetric beam matrix, in particular, the result
that the general form of such a beam matrix takes a very
simple structure in terms of the angular-momentum and
2D Courant-Snyder parameters. Section IV discusses the
constraints on how a round beam may be transformed due
to the existence of two invariants. We found that a round
beam remains round if the beam angular momentum
vanishes. The constraints also provide an expression for
the ratio of emittances when a round beam with a non-
vanishing angular momentum is transformed to an asym-
metric beam. In Sec. V, an explicit model for round beam
production and transport in an axial magnetic field is
given. By using a rotating coordinate system, the motion
can be described in terms of the well-known Courant-
Snyder formalism. In Sec. VI, it is pointed out that an
explicit realization of the round-to-flat transformation in
the case of a nonvanishing initial emittance is found as a
simple extension of the solution for the case of the
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vanishing initial emittance. Finally, Sec. VII contains
concluding remarks.

IL. 4D SYMPLECTIC TRANSFORMATION AND
TWO INVARIANTS

We consider particle distribution in 4D transverse
phase space. The coordinates in this space are specified
by a four-component vector. We find it convenient to
represent the four-component vector in terms of two
two-component vectors:

SRS R

Here x and y are the positions in the x and y directions,
respectively, and

_Psugn=Ps(d d ) )
() =Dy =2 (Dxfy) @
where p, is the momentum in the axial direction, m is the
particle mass, c is the speed of light, and s is the distance

along the axial direction. As the beam is transported
along an accelerator, the phase-space coordinates are

transformed as
X X
— M .
M ®

We will limit our discussion in this paper to the case
where M is linear, and the motion is Hamiltonian. The M
matrix is then symplectic:

MJIM = J,. 4)

Here ~ denotes the transpose operation, and J, is the
four-dimensional unit symplectic matrix

_[J 0
w=[3 9] 5)
where we have introduced the 2 X 2 unit symplectic
matrix
[ 0 1
J = [ 1 0 } (6)

An extensive discussion of linear and nonlinear symplec-
tic transformations can be found in [12], including the
fact that if M is symplectic then so is M.

The global properties of a beam are described by beam
moments. Assuming that the beam is centered properly,
the first-order moments vanish:

(X) =(Y)=0. (7

Here the angular brackets imply taking the average. The
second-order beam moments can be organized into the
4 X 4 beam matrix:

_ (XX) (XY)
: [<y;z> <YY>} ®
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Here, for example, (XY) is the 2 X 2 matrix:

o[ ) Gpy)
<XY>_[<pxy> (p.py) } ©)

The transformation, Eq. (3), induces the transforma-
tion of the beam matrix:

S — M3M. (10)

Because of the simplecticity of M, the transformation
(10) leaves the following two quantities invariant:

g4p = det(2), (11)

1

In the above, det denotes the determinant and Ty the
trace. The quantity e4p is well known and can be inter-
preted as the volume in 4D phase space. The trace invari-
ant Eq. (12) was pointed out by Rangarajan et al. in the
context of beam physics [11].

IIL. PROPERTIES OF ROUND BEAMS

The beam matrix 3 is symmetric and thus in general
contains ten independent elements. In many cases of
interest, however, beams are generated, accelerated, and
transported in a cylindrically symmetric environment.
The beam matrix must then be cylindrically symmetric:

S = Mi(6)2Mz'(0). (13)

Here My(6) is the matrix representing a rotation around
the beam axis:

Icos® Isind } (14)

My (6) = |: —Ising Icosé

where [ is the 2 X 2 unity matrix. By demanding that
Eq. (13) be satisfied for an arbitrary 6, we obtain the
following conditions:

(XX) = (YY), (15)
(XYy = —(YX). (16)

From Eq. (16), it follows:
(XY) = —(YX) = —(x7). (17)

Therefore the 2 X 2 matrix (XY) is antisymmetric and
can be written as

(XY)y= LJ, (18)

where J is the 2 X 2 unit symplectic matrix, Eq. (6).
The symmetric 2 X 2 matrix (XX) can be written as
follows:

(XX) = eeTy, (19)
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where
T, = D(d)T,D(d), 20)
b=y 1) @
8 0
TO_[O 1/3} (22)

Here the quantity e.; and B can be interpreted as the
emittance and the Courant-Snyder envelope function,
respectively [8].

Collecting these results, we can write a cylindrically
symmetric beam in the following form:

_ [ eesTy LJ
>= [ — L] euTy } 3)

With cylindrical symmetry, the beam matrix is thus
greatly simplified, requiring only the parameters e,
B, L,and d.

The quantity L is one-half of the angular momentum
since

<xpy - ypx> =2L. (24)

However, it is not the kinetic angular momentum since it
is measured in the rotating frame defined in Sec. V. It is
the canonical angular momentum in the laboratory frame
[10]. The canonical angular momentum is conserved in
the presence of a cylindrically symmetric axial magnetic
field. Experimental measurement of the beam angular
momentum was discussed recently [13].
Equation (23) can also be written as

2 = Mdz()Md, (25)
where
_ [ D) 0
=15 b | 20
_[eTo LJ
20 = [ —LJ el } @7

In obtaining Eq. (25), we have used the relation
DD, =J, (28)

which follows from the symplecticity of D, in x subspace.
Equation (25) represents the translation to the location of
the beam waist. In the following we will assume that the
beam is at the waist since the translation to other loca-
tions is simple to perform.

A cylindrically symmetric beam is also said to be
round in this paper.

IV. TRANSFORMATION OF ROUND BEAMS

To compute the two invariants, Eqgs. (11) and (12),
corresponding to the cylindrically symmetric % matrix,
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we start from the following identity:
JTOJ = _Tgl (29)

Using this identity it is straightforward to show

A A SR G i JEY)

By taking the determinant of both sides of this equation,
it then follows:

E4p = ngf - .£2. (31)

Here we have introduced &4 = +/det(3,). Let us also
introduce the thermal emittance gy, by

eq = (e4p)"/2 (32)

Eoff — ﬂstzh + Lz. (33)

Note that e is not a real emittance due to the correlation
in the beam matrix.

The matrix product occurring in the left-hand side of
Eq. (12) can be explicitly computed for 3 given by
Eg. (25). From this, the trace invariant is found as

L(3) = 2(ey + L7). (34)

Then

The existence of two invariants has important conse-
quences. First, consider the case of the cylindrically
symmetric channel. If a beam starts out to be cylindri-
cally symmetric and is then transported through a cylin-
drically symmetric channel, the 4D emittance &4 and
the angular momentum must be separately conserved.

Next, let us now suppose that the cylindrically sym-
metric beam matrix % in Eq. (27) is diagonalized by a
suitable simplectic transformation M:

~ T
MM = [“0 * 8701 } (35)
where €. are constants and
+ 0
=% e G

Note that the matrix M in Eq. (35) is in general not
cylindrically symmetric. However, M is symplectic and
thus the invariance of g4 and /I, is still valid. From the
invariance of &p,

g2 = (e — L) =e,6_. (37)
From the invariance of I,,
I =2(ek + L?) = &2 + 2. (38)
From these, it then follows:
er =g = L. (39)

Equation (39) is the main result of this section. It
constrains the possibilities for manipulating a cylindri-
cally symmetric beam via any symplectic transformation

104002-3



PRST-AB 6

ROUND-TO-FLAT TRANSFORMATION OF ANGULAR- ...

104002 (2003)

M. If the angular momentum £ vanishes, then
Enp =€&4 = €_. (40)

That is, a round beam with vanishing angular momentum
remains round under any symplectic transformation, even
if the beam transport is highly nonsymmetric. This result
was obtained earlier [14].

On the other hand, a round beam with nonvanishing
angular momentum will become asymmetric if the X-Y
correlation is removed by a suitable symplectic trans-
formation, as was noted in the literature [1,5]. The emit-
tances in the decoupled base are uniquely determined if
the thermal emittance and the angular momentum are
known, given by Eq. (39). When L > ¢, the beam is
extremely asymmetric:

- ()
&- €th '

Such a beam is said to be angular momentum dominated.

L > gy, 41)

V. BEAMS IN AN AXTAL MAGNETIC FIELD

Beams with angular momentum are often produced
and transported in an axial magnetic field. Particle mo-
tion in an axial magnetic field cannot be treated by the
well-known Courant-Snyder formalism [8]. In Ref. [7],
the usual Courant-Snyder formalism was generalized to
describe the helical motion by introducing circular
modes. In this paper we use a different approach based
on the observation that the motion becomes uncoupled
and simple in a rotating coordinate frame [9,10].

The rotation angle as a function of distance s along the
axial direction is given by

0(s) = / " d5k(3), (42)
0
where «(s) is the rate of rotation given by
B
«(s) = B, (43)
2p;

Here B(s) is the axial magnetic field, p, is the particle
momentum in the axial direction, and s is the distance in
the axial direction. Let the coordinate vectors in the
configuration space in the laboratory frame and in the
rotating frame be x; and x, respectively. They are related

by
_[XL_
X, =

o R(G)B }= R(O)x. (44)

Here the 2 X 2 rotation matrix is

[ cos®  sinf
| —sinf cosf |

R(6) = (45)

Differentiating both sides of Eq. (44) with respect to s
and then multiplying by p,, we obtain

104002-4

= R(0)(p — Koesx). (46)

In the above, e, is the unit vector in the axial direction
and
_ B(y)
Ko =3 . (47)
mc
The equations of motion in the rotating frame quantities
x and p are obtained by inserting Eq. (46) into the usual
laboratory frame equation of motion involving x; and p; .
The result is [10]

[p =[01=ps% =l

; 48)
Ip = —PpsK x.

The motion represented by these equations is clearly
Hamiltonian and uncoupled. Thus it can be described in
terms of the usual Courant-Snyder formalism.

Consider the process of electron beam production from
a cathode. An electron emitted from a cathode with
phase-space coordinates x;, = (x., y.), Pr = (Pxe» Pye)
in the laboratory frame enters into a region with non-
vanishing axial magnetic filed B(s). The initial phase-
space coordinates in the rotating frame are determined
from Eqgs. (44) and (46) by noting that the rotation matrix
R is unity at the cathode surface s = O:

xlimo = x,, (49)

p |S=0 = Pc + K€ X. (50)

In terms of the two-component phase-space vectors
Xand Y,

X Ve
X|3_0=|: i|, Y|3_0=|: ¢ i|
Pxe = KoYc Pyc + Kox,

Thus, the phase-space coordinates at the cathode surface
s = 0 in the rotating frame are related to those in the
laboratory frame by the following linear transformation:

0 0 O07[ x

1
Px _ 0 1 - Ko 0 Pxc
y 0 0 1 0 yeo | (52)
py s=0 Ko 0 0 1 pyc

X

Note that this transformation is not symplectic. However,
the transformation of the phase-space coordinates in the
rotating frame from s = O to any point along a beam line
is symplectic, since the motion in this region is governed
by a Hamiltonian motion, Eq. (48).

For a cylindrically symmetric emission we can write

(a2 =2 = o2, (53)

(P3e) = Tpe- (54)

It is also reasonable to assume that all correlation mo-
ments vanish:

(pi) =
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<xcyc> = <pcxpcy> = <chyc> = <pcyxc> = <chxc>
= (Pyey) = 0. (55

The elements of the beam matrix at s = O are then easy to
compute:

o? 0 0 Koo >
2 2.0 _ 2
Slg= 0 Ope T K§OZ — Koo 0
= 0 Koo o? 0
— Koo 0 0 o3 +Kio?

(56)

This matrix is in the form of Eq. (27) with the identi-

fication
Eeff = 0'0\10'%,6 + K(z)a'%, &0

o,

B = (58)

2 2
Ope + Kkgo:

L = kyo?. (59)

From Egs. (57) and (59), it follows that &, = 0.0 ,.. The
beam matrix after acceleration will in general have a
larger thermal emittance o.p.. However, the angular
momentum will be strictly conserved if the channel is
cylindrically symmetric.

VL. REMOVING X-Y CORRELATION:
DIAGONALIZATION

The beam matrix in Eq. (23) contains correlation in
the X-Y elements. A general procedure to remove the
correlation by constructing the transformation matrix
M was developed in Refs. [6,7] starting from the obser-
vation that the phase advances of the two transverse
motions should differ from each other by 90°. An explicit
procedure accomplishing this in terms of three quadru-
poles was given by Edwards et al. in the case of vanishing
thermal emittance [4]. Here we remark that it is straight-
forward to generalize the latter procedure to the case of
nonvanishing thermal emittance.

Let A be the 2 X 2 matrix for (x, p,) corresponding to a
certain arrangement of quadrupoles and free space. The
corresponding matrix B for (y, p,) is obtained from A by
replacing the quadrupole strength ¢ — —gq. If the quad-
rupoles are rotated by 45°, then the 4 X 4 transformation

matrix is
_1TA, A
M= E[A_ A, } (60)

where A. = A = B. Assume that the matrix M3 M is
diagonal. The XY component of this matrix must vanish

0=ce(A;ToA_ + A_TyA,) + LA+ JA, —A_JA).
(61)
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This equation is solved by
A_=ALS, (62)

where

S = (g _Oﬁ ) (63)

Here B is given by Eq. (59). Equation (62) can also be
written as

A(l = §)=B(1 + ). (64)

This is a 2 X 2 matrix equation determining the matrices
A and B. The determinants of both sides of Eq. (64) are
identical from the properties of the matrices A, B, and S.
Thus there are only three independent scalar equations.
The solution can be constructed by three quadrupoles
separated by free spaces, as was worked out for the case
&g = 01in Ref. [4].
Equation (62) was also derived in Ref. [7].

VIL. CONCLUDING REMARKS

In this paper I presented a study of a round beam and its
transformation to asymmetric beams by means of general
properties of the symplectic transformation and the cy-
lindrical symmetry. Although the formulas obtained here
have all been derived previously, the method presented
here may be useful in understanding round beam trans-
formation.
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