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We are trying to accurately calibrate the GSET of the QCM cavities to
be able to operate them at the design parameters. How much this matters
in practice is not clear, but we will hopefully learn something about that as
we go.

On Feb 1 and 2, Yan measured the energy gain of both QCM cavities
individually for a range of GSET values while leaving the GSET of the other
cavity fixed. The beam energy was determined using the 601 dipole magnet
as a spectrometer. Matt extrapolated these curves to the hypothetical case
of the 2-cell cavity being at zero field (log entry 02/10/2021). He concludes
that the current field setting of the 2-cell is considerably above the design
value and should be decreased.

To get a feeling for the interactions and numbers, let us revisit a simula-
tion model I made a few months ago. I'm going to explain what I think I
understand so you can tell me how it actually is :)

1 General

I assume the GSET value to be proportional to the field amplitude. In the nonrela-
tivistic case, because 8 changes in flight as a function of phases, amplitudes, and initial
conditions, the field amplitude is not necessarily proportional to the energy gain, and
the concept of average energy gain per unit length is therefore nonsensical. To some
extent, the TOF changes can be compensated for by adjusting the phases, but we have
more < 1 cells than we do phase knobs.

Because cavities do not care about momentum and I share their ignorance, I will
convert all momenta (e.g., those inferred from the spectrometer setting) to kinetic energy
according to

By = /p2c2 + m2ct — mc?. (1)

In the context of this study, “optimum” phases refer to those that maximize the
total energy gain because I assume that was the objective of optimization during the
measurement. Energy spread and bunch length should most likely factor into the figure
of merit and are easy to add at a later time, see below.


https://logbooks.jlab.org/entry/3866372

2 Simulation method

The beam is modeled as a single particle with a starting energy of 200 keV and at a start-
ing coordinate on the cavity axis, considerably before the onset of the field. This particle
is tracked onedimensionally on a discrete time axis, applying energy gain accordingly.
The cavities are modeled using Haipeng’s normalized on-axis field maps. Spline inter-
polation allows for the computation of E,(z) for any value of z. The time dependency
of the total field is:

E.(z,t) = cos(2mft — p2)AsEa(2)
+ cos(2m ft — ¢7) ArEr(2) (2)

with f = 1497 MH2E| and the spline functions E;(z) for Haipeng’s field maps. These
functions are shown in Fig. [1, The phases ¢; have an arbitrary offset depending on the
starting coordinate of the particle.

Note that the field amplitudes A; represent the peak values and are therefore much
higher than the GSET numbers. Once we understand what we are doing, we may be able
to infer the constant of proportionality from the simulation, keeping in mind that the
numbers are not strictly proportional in every case.
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Figure 1: Normalized on-axis field maps.

This simulation is trivially extensible to include bunch length and energy spread by
applying a Monte-Carlo beam instead of a single particle. My last model included that,
but I decided against it for this particular case for the sake of computation time. It’s
not what we're here to learn today.

Ts this correct? Let me know if it isn’t.



3 First tests

First, let us look at the [¢2, ¢7] parameter space for a given tuple of amplitudes to see if
the result makes sense. Such a scan is shown in Fig.[2] Unfortunately, the low number of
paper /screen dimensions makes the complete four-dimensional parameter space difficult
to visualize at once.

Unsurprisingly, there is a contour inside of which the beam does what it is supposed
to. The shape of the contour and the position of the maximum are not trivial because
@2 affects both the transit time through the first cavity and the TOF to the 7-cell, where
B is still less than 1. If you look at the kinetic energy as a function of ¢ or z, you will
find that at the maximum-energy-gain point, the 7-cell actually decelerates the beam a
little at first, which I guess is OK. This is shown in Fig.
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Figure 2: Final beam energy in the [¢o,¢7] parameter space. Ay = 7.47MVm~!,
A7 = 24.0MVm~!. The amplitudes are chosen to match the experiment as
explained in Sec. Do not be alarmed by the high numbers; I believe they
are correct and our view is distorted by the inflationary use of effective average
fields. White areas in this plot correspond to unphysical cases where the ki-
netic energy goes below zero. The maximum energy is 9.58 MeV at ¢o = 304°,
¢7 = 68°. This is the same energy as the highest value from Yan’s measure-
ment (Gget = 12).
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Figure 3: Kinetic energy as a function of time (maximum-energy conditions). ¢o = 304°,
7 =68° Ay =747TMVm™', A; =24.0MVm.

4 Comparison with measurements

4.1 7-cell amplitude scan

Let us try to reproduce Yan’s measurement where he varied Ay, keeping ¢o and As
constant. I assume ¢o was kept at the value that gave the maximum energy gain at
nominal settings, which is 304° in our simulation. For the full range of A7 settings,
we scan the ¢7 space for the Ey maximum, choosing Ay such that the y-axis intercept
of the resulting Fy(A7) straight line fit is at about 0.643MeV as in Yan’s data (p =
1.10 MeV/c). Finding the A value involves a bit of teying iterative optimization because
the points are not on a straight line in the vicinity of Ay = 0. This is why I'm saying
what meaning this intercept holds, if any, is a matter of definition. Open for debate, of
course! The result of this simulation is shown in Fig. |4 It qualitatively resembles Yan’s
data.

Let us compare how the 7-cell phase needs to be adjusted for maximum gain. Since
we’re not confident in our calibration factor yet, we will compare the phase setting as
a function of total energy gain from measurement and simulation; we pretend to know
the measured beam energy accurately. This comparison is shown in Fig. o} The curves
agree fairly well.
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Figure 4: Maximum total energy gain for the whole range of 7-cell amplitudes at the
respective optimum value of ¢7. ¢ = 300°, Ay = 7.47MV m~!. The fit only
uses data with A7 > 5MV m™L
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Figure 5: Optimum 7-cell phase as a function of final beam energy. ¢ = 304°, Ay =
747MVm~!. As the absolute phase is arbitrary, the measured values are
shifted by 55° to make the curves overlap. You might want to get excited now,
but read on.



4.2 2-cell amplitude scan

Yan’s second measurement where he varied the 2-cell amplitude can be simulated in
a similar fashion, though the parameter space is much larger because both phases are
adjusted. The result is shown in Fig. [6] After all the good agreement we’ve seen up to
this point, the discrepancy here is egregious. The simulated beam energy at As = 0 is
much too low (6.1 MeV vs. 7.8 MeV), and the nonlinear slope at high amplitudes is not
reproduced. I have no explanation yet. Until we know what causes this curvature in the
first place, fitting lines to these data and using them as a basis for extrapolation seems
ill-advised.
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Figure 6: Maximum total energy gain for the whole range of 2-cell amplitudes at the

respective optimum values of both ¢y and ¢7. A7 = 24.0MVm™'.

measurement is shown in the second plot for comparison.

Yan'’s



The attempt to compare the optimum phases from this measurement with the simu-
lated result also ends up in spectacular failure, see Fig. [7}
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Figure 7: Optimum values of ¢o and ¢7 for the whole range of 2-cell amplitudes as
a function of final beam energy. A; = 24.0MVm™!. Yan’s data has been
shifted up by 479° (¢2) and 57° (¢7), respectively, but there is no way to line

up the data.

The main reason why I wanted to write this was to convince you that you cannot
blindly add or subtract the energy gains from the individual cavities. Calibrating the
field amplitude of a single cavity in isolation based on its energy gain in the system is
not trivial, and the result of it, even if correct, does not have a well-defined meaning. In
any case, now it would be interesting to find the reason why the results from this section
don’t match.



5 Potential error sources

e Calibration of dipole magnet?
o Cavity frequency correct?

e I wasn’t there when the measurement was done. Is there something I'm missing
as to the procedure? Dipole magnet on loop?

¢ I measured the distance between the two cavities in a drawing with a ruler. It may
be off by a percent or two. My intuition says a few mm should not be the end of
the world, but I can check if it makes a difference.

o The discretization in the simulation (time, phase angles) has been checked for
convergence and presents no significant error source. See Fig.

The potential impact of these errors is quantifiable with relative ease. Before I waste time
on something stupid, though, feel free to let me know if there is anything superobvious
I have overlooked.
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Figure 8: Asymptotic behavior of algorithm with increasing number of time steps. The

total simulated time is 7ns in every case. This is enough to always leave the
field region.
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