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Joe conjectured that the first cavity in the booster could be intentionally
misphased to reflect the beam back upstream. The idea is that this effect
should start to appear at a well-defined field amplitude, thereby enabling an
accurate determination of the latter. While I don’t have a sliver of a clue as
to how this would work in practice (you have to separate the two beams so
the viewer detecting the secondary beam won’t intercept the primary beam;
actually, the correctors will likely do that for you but in uncontrollable ways;
horrendous things might happen to the emittance; etc.), I can give you a
onedimensional prediction of the parameters very easily. No idea if these
calculations are useful to anyone, but who doesn’t like an academic exercise?

These calculations do not care about the transverse beam properties, and
to my naïve intuition it seems like there might be prohibitive problems there.
Also, I think if you try this experimentally, you’re going to lose some beam
or all of it on the cavity walls, though in viewer-limited mode the resulting
heat load seems too low to cause a quench.

1 Approach
Let us use the same onedimensional model we used for the energy gain studies, but
change the tracking algorithm such that it will not throw away the particles when their
momentum gets negative. Unfortunately, now we need to use momenta rather than
energies to be able to include the sign without signing up for physicists’ hell. The
electric field is given by

Ez(z, t) = cos(2πfbt− φb)AbEb(z)

+ cos(2πfQCMt− φ2)A2E2(z). (1)

∗I’m aware that photocathode folks use an unusual definition of this term; I’m referring to a potential
minimum in vacuum that reflects electrons.
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As before, we use a spline interpolation of Haipeng’s CST field maps for Eb and E2.
The instantaneous momentum change is

dpz
dt

= Fz = eEz(z, t), (2)

which is solved for pz in discrete time. The other kinematic quantities follow from the
usual laws.

The coordinate system is the same as in the previous studies: The center of the 2-cell
cavity, i.e. the symmetry point between the cells, is located at z = 0.

2 Results
Figure 1 shows what the longitudinal phase space looks like at the entrance of the 2-cell
cavity with my somewhat arbitrary choice of buncher amplitude, which places the focus
somewhere inside the first cell.

Because I’m not exactly sure what we are trying to learn here, let’s start playing
around. Figure 2 shows the shape and location of the parameter contours we can use to
reflect the beam. Joe is correct in intuiting that the usable phase range is fairly narrow,
perhaps 10° at most, so any RMS bunch length in excess of about 2 ps will be outside the
“acceptance”. However, because the focusing action of the buncher trades bunch length
for momentum spread and both quantities affect the sharpness of the usable parameter
space, there may be a nontrivial optimization problem here, which I’m not going to think
about unless challenged to.

The field amplitude needed to reflect the beam using the first cell only seems exper-
imentally inaccessible and also uninteresting. In the interesting parameter regions (2
and 3 in Fig. 2), both cells contribute to a funny seesaw motion that takes about 2 ns
to ultimately send the bunch back. To get a sense of what happens kinematically, we
can look at the longitudinal phase space trajectories in an ensemble-average sense, see
Figs. 3 and 4.

If there is anything else you would like to get out of this study, feel free to let me
know; the computations and analyses are very straightforward.

2



−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

z − 〈z〉 (mm)

p
z
−
〈p

z
〉

(k
eV

/c
)

initial
〈z〉 = −3.3m√

Var(z) = 2mm ∝ 10 ps
〈pz〉 = 26 eV/c

at cavity
〈z〉 = −0.13m√

Var(z) = 0.09mm ∝ 0.4 ps
〈pz〉 = 714 eV/c

Figure 1: Longitudinal phase space at the beginning of tracking and at the entrance of
the 2-cell cavity. The buncher focus is set to zf = −0.09m, inside the first
cavity cell (measured with the 2-cell off). By showing the Monte-Carlo-ness of
the approach, I am hoping for Hannes’ approval to call it a simulation.
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Figure 2: Final bunch momentum and longitudinal position in the [A2, φ2] parameter
space. The black line in the momentum plot is the contour of maximum
energy gain; the circle denotes the point at which the energy gain is 330 keV,
corresponding to a final momentum of 0.91MeV/c. In this amplitude range,
there are three regions in which the beam is distinctly reflected (1, 2, 3) and
a fuzzy one in which the momentum is so low that the beam isn’t quite sure
what to do (4). Region 1 is most likely experimentally inaccessible. Regions
2 and 3 are not the same because there is a small region of acceleration in
between. The “final” time is chosen such that we look at the bunch before it
gets a chance to travel backward through the buncher.
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Figure 3: Ensemble average of the trajectory through the booster in region 2, right at
the tip of the inner prolate structure. φ2 = 23°, A2 = 8.1MVm−1. The bunch
gets reflected in the second cell.
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Figure 4: Ensemble average of the trajectory through the booster in region 3. φ2 = 16°,
A2 = 7.2MVm−1. The bunch gets reflected in the second cell.
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