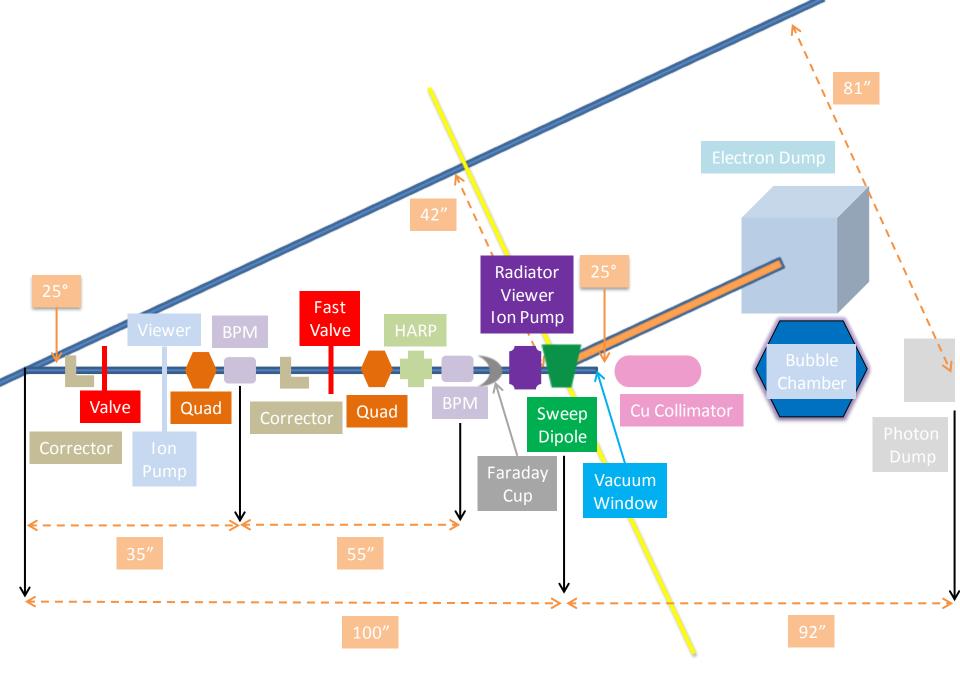
Bubble Chamber Planning Meeting

07 August 2013

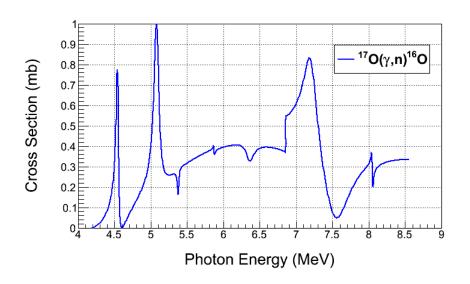

Agenda

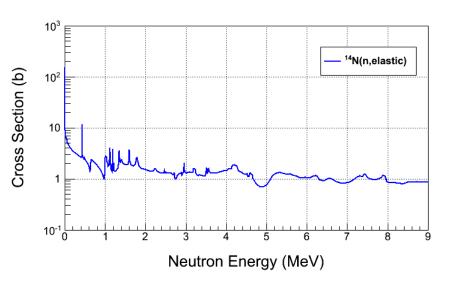
- 1. Bubble Chamber progress at Argonne
- 2. Beamline Layout
- 3. Bubble Chamber cost estimate: procurement and labor
- 4. Background from ¹⁷O(γ,n)¹⁶O and subsequent neutron elastic scattering with ¹⁶O and ¹⁴N nuclei
- 5. Background from 13 C(γ ,n) 12 C (in case we decide to use CO₂ instead of N₂O)

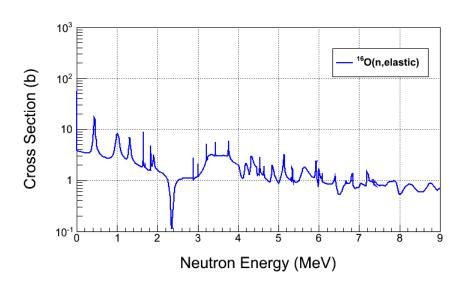
Beamline Layout

- I. HARP to measure beam profile
- II. Fast Valve to protect from vacuum failure
- III. Distance between two BPMs = 55" (was 18" for PEPPo)
- IV. Camera for OTR light from Cu foil
- V. Electron Dump: isolated to measure beam current, 2 kW
- VI. Beam Properties at Radiator:

Beam Kinetic Energy, (MeV)	3.0 – 8.5
Beam Current (μA)	0.01 – 100
Absolute Beam Energy	0.1%
Relative Beam Energy	0.1%
Energy Resolution (Spread), σ_T /T	0.06%
Beam Size, σ _{x,y} (mm)	1-2


Cost Estimate

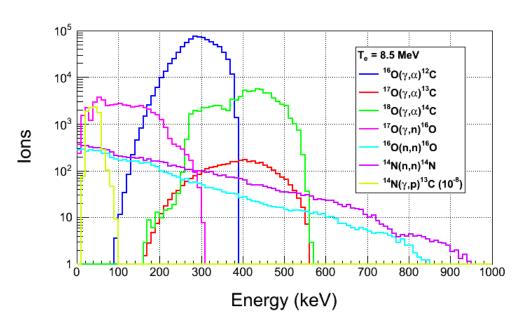

- I. Radiator motion and Sweep Dipole must be in FSD
- II. BCM0L02 and Electron Dump in Beam Loss Accounting (BLA)
- III. Cooled: Radiator and Electron Dump.
- IV. Uncooled: Photon Collimator and Photon Dump
- V. Re-use PEPPo radiator and beamline
- VI. New beamline components: 2 Super Harps + Fast Valve
- VII. Summary of labor cost by group:

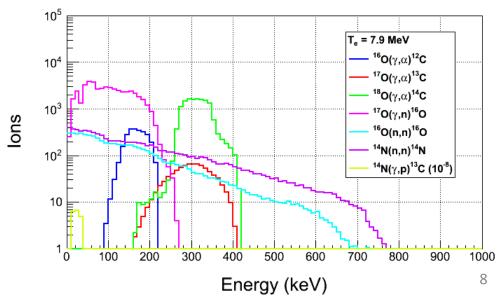

Group	Labor	
Survey & Alignment	3 wks x 2	
Magnet Test	1 wk x 2	
Engineering Design	12 wks	
Software	3 wks x 2	
EES	6 wk x 2	
EH&Q	4 wks	

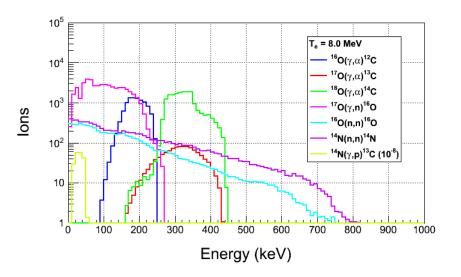
Item	Material Procurement	Shop	Labor
New Dipole Magnet	Dipole Magnet (\$8,000) Hall Probe (\$2,000)		Mapping (1 week) EESDC (1 week) Alignment (2 days)
New Power Supply	Power Supply (\$5,000)		Software (2 weeks)
New Beamline	2 Super Harps and Fast Valve (\$30,000)	Pipes + Pedestals (\$20,000)	Design (6 weeks) Alignment (1 week) Software (4 weeks) EES (5 weeks)
Radiator (cooled ladder, FSD)	0.02 and 0.10 mm Cu foils (\$2,000)	\$4,000	Design (2 week) Alignment (2 days)
Sweep Dipole			
Electron Dump	Pure Cu (\$5,000)	Dump + Pipes (\$15,000)	Design (2 week) Alignment (1 day)
Cu Collimator	Pure Cu (\$5,000)	Collimator + Stand (\$5,000)	Design (1 week) Alignment (1 day)
Photon Dump & Stand	Pure Al (\$3,000)	\$4,000	Design (1 week) Alignment (1 day)
Safety Review			4 weeks
Install			6 weeks
Bubble Chamber			Alignment (1 week)
Total	\$60,000	\$48,000	\$60,000
Total (with overhead)	\$75,000	\$60,000	\$90,000

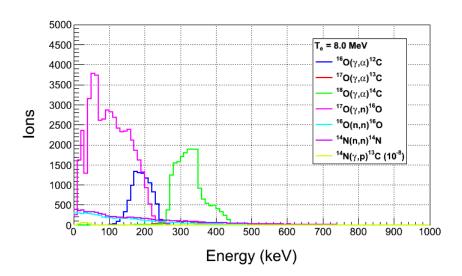
¹⁷O(γ,n)¹⁶O Background

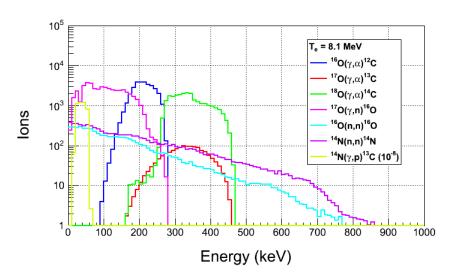
Ion Energy Distribution

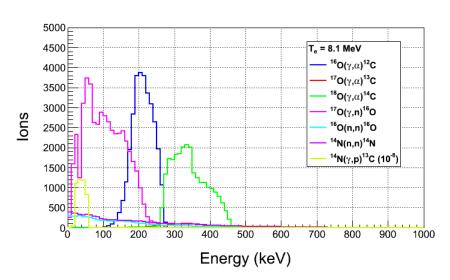

Depletion:

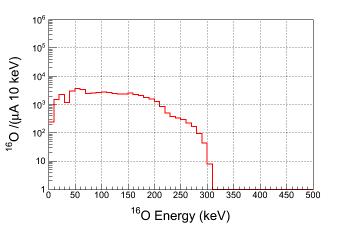

- I. ¹⁷O depletion=5,000
- II. ¹⁸O depletion=5,000

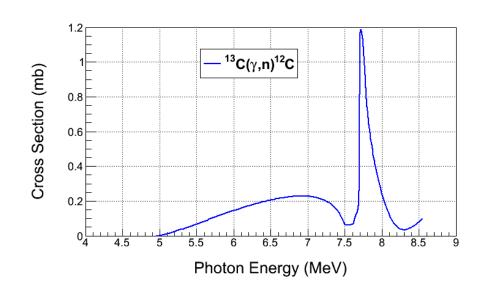

Natural Abundance:

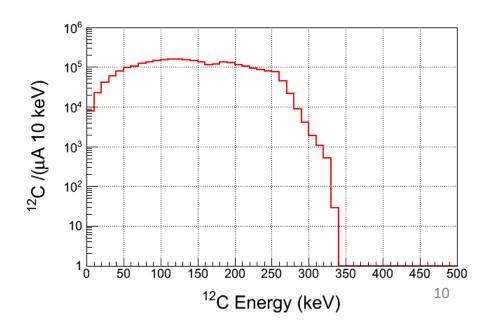

I. ¹⁷O: 0.038%


II. ¹⁸O: 0.205%








¹³C(γ,n)¹²C Background

- Depletion:
 - I. ¹³C depletion=1,000
- Natural Abundance:
 - I. ¹³C: 1.07%

For comparison, $^{17}O(\gamma,n)^{16}O$

