

22nd International Spin Symposium 9/28/2016

High energy X-ray vortex generation using inverse Compton scattering

Yoshitaka Taira

National Institute of Advanced Industrial Science and Technology (AIST), Japan Visiting scientist: Mississippi State University and Jefferson Lab.

Acknowledgement

Travel support of 22nd International Spin Symposium.

JSPS Postdoctoral Fellowships for Research Abroad.

Dipangkar Dutta (Mississippi State University).

Joseph Grames, Shukui Zhang, Dave Gaskell, Matthew Poelker,

Geoffrey Krafft, Riad Suleiman (Jefferson Lab).

Benjamin McMorran (University of Oregon).

Masahiro Katoh (IMS). Takehito Hayakawa (QST).

Group member of Radiation Imaging Measurement Group at AIST.

Andrei Afanasev (George Washington University).

Daniel Seipt (Helmholtz Institut Jena).

Valeriy Serbo (Novosibirsk State University).

Vortex beams carrying orbital angular momentum

High energy X-ray (gamma-ray) vortex generation

Optical vortex

Forming a helical wave front. $E \propto \exp(i\ell\phi)$

- Carrying orbital angular momentum (OAM)
 - lħ
- Total AM
 = OAM + spin AM

= *l*ħ+ħ

M. Padgett et al., Phys. Today 57 (2004) 35.

Generation

Special filters

Cylindrical lens

Spiral phase plate

Hologram

J. Courtial et al., Opt. Comm. 159 (1999) 13. M. W. Beijersbergen et al., Opt. Comm. 112 (1994) 321.

Without filters

Electromagnetic radiation from an electron

Main topic of this talk

B. M. Kincaid et al., J Appl Phys 48 (1977) 2684.

Vortex beams

Wikipedia.

Application of vortex beams

Experimental demonstration

- OAM transfer to micro particle
- Quantum entanglement
- Creation of metal nano needle
- Terabit data transmission

Theoretical proposal

- X-ray dichroism
- Magnetic mapping using electron vortex
- Direct observation of rotating black hole

A. T. ONeil et al., Phys. Rev. Lett. 88 (2002) 053601.

Vortex beams carrying orbital angular momentum

High energy X-ray (gamma-ray) vortex generation

Purpose

Generation of gamma ray vortex (> MeV) and development its application.

Application possibility

Insight into the proton structure

I. P. Ivanov, Phys. Rev. D 83 (2011) 093001.

If the OAM of gamma ray is transferred to the quark/gluon, it becomes novel probe of the proton spin.

Nuclear physics

Y. Taira et al., arXiv 1608 (2016) 04894.

Excited states can be populated by high order transition. Photon-induced reaction cross section will be changed.

Generation of positron vortex via pair production

As a new particle source for high energy physics.

How to generate gamma ray vortex?

1 Frequency upconversion of an optical vortex laser by inverse Compton scattering (ICS)

U. D. Jentchura et al., PRL 106 (2011) 013001.

2 Nonlinear inverse Compton scattering of intense circularly polarized laser (not vortex laser)

Y. Taira et al., arXiv 1608 (2016) 04894.

Compton backward scattering of circularly polarized gamma ray

ICS of optical vortex laser

It was predicted that OAM of the laser is preserved at the very small angle $\theta < 1/\gamma^2$.

JLab Compton polarimeter

Fabry-Perot cavity Stored power: 1000 W To exceed background, more than 100 W vortex laser is required.

T. Allison et al., NIMA 781 (2015) 105.

Measurement technique of vortex laser

Interference pattern

1

2

2 Nonlinear ICS of circularly polarized laser

Helical motion is induced by the circularly polarized laser ($a_0 \approx 1$) and this motion emits n-th higher harmonic and vortex radiation.

Electric field and Stokes parameter

Electric field in the x-y plane

$$E = \frac{i}{\sqrt{2}} \left(C_{\theta} \cos \theta + C_{\phi} \right) \exp\left\{ i \psi_{0} + ikR + i(n-1)\phi \right\} e_{+}$$
$$+ \frac{i}{\sqrt{2}} \left(C_{\theta} \cos \theta - C_{\phi} \right) \exp\left\{ i \psi_{0} + ikR + i(n+1)\phi \right\} e_{-}$$

$$e_{\pm} = \frac{e_x \pm ie_y}{\sqrt{2}}$$

Positive helicity carry (n-1)ħ OAM Negative helicity carry (n+1)ħ OAM.

Degree of circular polarization

Spatial distribution

Annular shape of higher harmonic is due to the helical wavefront.

Characteristics of nonlinear ICS gamma-ray

Helicity	Positive	Negative
Fundamental (n = 1)		
Ν	60 x 10 ¹⁰ photons/sec	2 x 10¹⁰ photons/sec
E	11-13 MeV	2.6-2.7 MeV
OAM	0	2 ħ
2nd harmonics		
Ν	20 x 10¹⁰ photons/sec	2 x 10¹⁰ photons/sec
E	21-26 MeV	5.2-5.5 MeV
OAM	ħ	3ħ

 $a_0 = 1.0, \lambda_0 = 1.0 \mu m, \gamma_0 = 2000, N_e = 10^9 \text{ electrons/sec}$

Second harmonic X-rays at BNL (a₀=0.6)

Conclusion

- Gamma ray vortex providing an additional degree of freedom will open new research opportunities!
- Gamma-ray vortex can be generated by several methods using the Compton scattering.
- Measurement of gamma ray vortex is a big issue.

Interferometry, Dichroism, and Pair production are candidates.

Thank you for your attention!