PRE-CONCEPTUAL DESIGN OF A CW POSITRON SOURCE FOR JLAB (2013-LDRD-02)

JOE GRAMES

LDRD PROPOSAL REVIEW - JULY 17, 2013

✓ PROJECT OVERVIEW

✓ THE TEAM

✓ LDRD EVALUATION CRITERIA

✓ REVIEWER QUESTION

✓ BUDGET

PHYSICS MOTIVATION

(bullets refer to letters of endorsement)

□ 12 GEV CEBAF - The merits of positrons, polarized and/or unpolarized, for the Nuclear Physics program at JLab is comparable to the benefits of polarized with respect to unpolarized electrons.

Dr. Volker Burkert, Principal Staff Scientist and Head of Hall B, JLAB

NEXT GEN FACILITIES - Unpolarized and polarized positrons in the next generation of accelerators (MEIC, ILC, LHeC) have been identified as either necessary or complementary tools for the completion of their Physics program.

- Dr. Yuhong Zhang, Senior Staff Scientist, MEIC Accelerator Design Study, JLAB
- Dr. Alessandro Variola, Accelerator Department Director, LAL Orsay

■ NEW DIRECTIONS - There exists a long standing and never satisfied interest of the Material Science Community in an intense low energy (0.05-1.00 MeV/c) positron beam, as a characterization tool of material structure.

> Dr. Kelvin Lynn, Director for the Center for Materials Research, Washington State University, Boeing Chair for Advanced Materials

PHYSICS INTEREST	POSITRON INTENSITY
Two Photon Exchange	10 – 50 <u>nA</u>
Positron Proton Elastic Scattering	20 – 40 pA
GPD's and DVCS with Positrons	8 – 40 <u>nA</u>
Inclusive Structure Functions	100 – 250 <u>nA</u>
U-Boson Dark Matter Search	20 <u>nA</u>
MEIC with Positrons	1 – 10 μA
Slow Positron Facility	10 – 100 pA

POSITRON SOURCE CANDIDATES

□ WHAT CHARACTERIZES A POSITRON SOURCE CANDIDATE ?

✓ We believe a <u>conventional design</u> is best suited for Jefferson Lab

EXAMPLES OF A "SUITABLE ELECTRON DRIVE BEAM"

✓ CEBAF INJ (100 MeV)
✓ FEL (100MeV)
✓ CEBAF (12 GeV)

HIGH POWER BEAM ABSORBERS

□ HIGH POWER ABSORBERS ARE CHALLENGING

- ✓ Highly localized beam power (10-100 kW) to be dissipated
- ✓ Radiation management is a priority, specifically to cost and operability

ABSORBER TECHNOLOGY BALANCES MANY IMPORTANT PARAMETERS

- ✓ Heat energy absorption and heat dissipation in target
- ✓ Radiation prompt radiation and material activation around target
- ✓ Accelerator Integration collection beam line after target

□ NEW DIRECTIONS

- \checkmark A novel or original implementation of a positron source is likely
 - Study applicability of recently issued JLAB patents
 - Introduce "split two target" design
 - first (optimize bremsstrahlung) high radiation
 - second (optimize positron production/collection) low radiation footprint

MOGA SOURCE OPTIMIZATION

DIVERSE SET OF PARENT PARAMETERS

- ✓ Electron Drive Beam
- ✓ Single- & Double- Targets
- ✓ Electron Beam Power
- ✓ Positron Collection
- ✓ Positron Beam
- ✓ Positron Polarization
- ✓ Value

(energy, intensity, radiation, polarization) (bremsstrahlung and e+/e- converters) (radiation, activation, thermal management) (adiabatic matching, acceleration, optics) (emittance, damping, transport, acceleration) (PEPPo concept, self-polarization) (cost, size, scale)

□ IMPLEMENT MULTI-OBJECT GENETIC ALGORITHM (MOGA)

- ✓ Principles of biological evolution to optimize multi-dimensioned non-linear problems
- ✓ Application to modern sophisticated problems
 - Operating highest brightness high current photoinjector (Cornell)
 - Design of optimized luminosity for ILC
 - Optimized design and operating costs of an SRF linac
- ✓ JLAB expertise

TECHNICAL REVIEW & PRE-CONCEPTUAL DESIGN REPORT

□ DOWN SELECTION (CLOSED LOOP PROCESS)

- ✓ Technical Review
 - Internal and External reviewers
 - Review materials provided well in advance
 - One day agenda split between presentations and reviewer assessment
- ✓ Committee Charge
 - Assess and recommend scenario(s) for detailed study
 - Reduce to 1 or at most 2 concepts

SHIFT EFFORT FROM CANDIDATES TO PRE-CONCEPUTAL DESIGN

- $\checkmark\,$ Limited to design and analysis of most critical components
 - Absorber
 - Collection
 - Optimization
- ✓ Explore prototype engineering plan
 - Critical path R&D
 - Positron source systems (targets, magnets, SRF, vacuum, shielding)
 - Facility integration
 - Risk assessment

THE TEAM

"The **ultimate deliverable** of this proposal is a technically well-developed **Pre-Conceptual Design Report** based upon physics-motivated User input, with alignment and feasibility to the existing CEBAF and FEL facilities, and including an optimization and technical review of candidate design schemes."

LDRD EVALUATION CRITERIA

POTENTIAL IMPACT ON JLAB

- ✓ High
- ✓ Grows and strengthens core expertise in (polarized) particle sources for CEBAF NP
- ✓ Potential for center of growth in low energy or material science and collaboration

LIKELIHOOD TO ACHIEVE GOALS

- ✓ Strong
- ✓ Builds upon JPOS'09, University Collaborators, 2 PhD's, JLab patents, ILC support, PEPPo

□ PROSPECTS FOR ATTRACTING FUTURE FUNDING

- ✓ New funding for future NP program
- ✓ HEP funding to support high energy e+ colliders
- ✓ US interests in materials sciences to compete with European leadership

STRATEGIC VALUE OF YOUR PROJECT TO JLAB

- ✓ Entirely new aspect to CEBAF NP program
- ✓ Support MEIC at JLab with positrons

□ LEVEL OF INNOVATION IN SCIENCE AND/OR TECHNOLOGY

- ✓ First ever CW positron source
- ✓ New technology to produce polarized positrons at low energy
- Evolution of high power beam absorbers

REVIEWER QUESTION

Analyze the pro and cons of stretching the funding over 3 years.

PROS

- ✓ 3 year is preferable (submitted 2 year proposal to be most compact)
- ✓ Improved task flow (more serial, less parallel)
- ✓ Better synchronization with post-doctoral scientist search and funding term

✓ Deliverable delayed by one 1 year

BUDGET

				PI Name Pavel Degtiarenko and Joe Grames				PI Name Pavel Degtiarenko and Joe Grames			
	Indirect Rates			2 YEAR (SUBMITTED)			3 YEAR (QUESTION)				
				Proposal Title: Accelerator Preconceptual CW Positron Source			Proposal Title: Accelerator Preconceptual CW Positron Source				
CATEGORY	Yr 1	Yr 2	Yr 3	LDRD REQUEST YEAR 1 (\$)	LDRD REQUEST YEAR 2(\$)	LDRD REQUEST YEAR 3 (\$)	TOTAL (\$)	LDRD REQUEST YEAR 1 (\$)	LDRD REQUEST YEAR 2(\$)	LDRD REQUEST YEAR 3 (\$)	TOTAL (\$)
Direct Costs											
Labor - Fringe				75,418	77,680		153,098	35,670	82,200	40,452	158,322
Labor - Non-Fringe				0	0		o	0	0		0
Fringe	48.25%	48.25%	48.25%	36,389	37,481		73,870	17,211	39,662	19,518	76,391
Stats	8.90%	8.90%	8.90%	6,712	6,914		13,626	3,175	7,316	3,600	14,091
Total for Personnel				118,519	122,075		240,594	56,056	129,178	63,570	248,804
Travel <\$50K							0				0
Consultants / Subcontractors <\$50K				16,864	12,264		29,128	16,864	15,264	4,000	36,128
Materials and Supplies <\$50K							o				0
Equipment <\$50K							o				0
Other Direct Costs <\$50K							0				0
Direct Costs >\$50K							0				o
Total Direct Costs				135,383	134,339		<u>269,722</u>	72,920	144,442	67,570	284,932
Indirect Costs											
G&A	50.00%	50.00%	50.00%	67,691	67,170		134,861	36,460	72,221	33,785	142,466
Total Indirect Costs				67,691	67,170		134,861	36,460	72,221	33,785	142,466
TOTAL LDRD REQUEST				203,074	201,509		404,583	109,380	216,663	101,355	427,398
											1
TOTAL BUDGET							<u>404.583</u>				<u>427.398</u>