Matching candidate phase spaces to the injector

Max Bruker Center for Injectors and Sources

February 21, 2024

R28 vs. R30-4: drift, no emittance, no space charge

R28 vs. R30-4 at 140 kV: optimized lenses, with emittance, no space charge

- we don't need to understand the whole injector: the first two lenses determine the match
 - could be used as telescope, neglecting dipole
 - \cdot or optimized for two waists
- mimic machine setup strategy
- · single-wound, as-built FX model
- minimize $\sigma_{x,1}^2 + \sigma_{y,1}^2 + \sigma_{x,2}^2 + \sigma_{y,2}^2$
- BDL: +104, -94 for both cases (Dec 4: +97, -82)

R28 vs. R30-4 at 200 kV: optimized lenses, with emittance, no space charge

same optimization

- more gun focusing gives slightly smaller beam size overall
- · define constraints / objectives:
 - maximum beam size in first lens

 → next slide
 - maximum beam size in dipole
 → unknown, no field map
 - · difference low/high bunch charge

Tolerable beam size in FX solenoids

- · single-wound, as-built FX
- convergent beam w/ thermal emittance from toy gun
- · optimize for waist in dipole

- $\sigma_{\rm X} <$ 1 mm does not produce a well-defined waist (which is fine)
- $\sigma_{\rm X} > 2\,{\rm mm}$ degrades emittance

