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A paper has recently been published which describes the technique of so-called ‘spin tune mapping’ to measure
the ‘stable spin axis’ (spin closed orbit) of a spin polarized beam circulating in a storage ring. This paper presents
an independent analysis of the technique, and significantly different findings are reported below. In particular,
it is derived that there are several unquantified systematic errors which are not treated in the previous analysis.
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1. Introduction

A paper has recently been published [1] which describes the tech-
nique of so-called ‘spin tune mapping’ to measure the ‘stable spin axis’ of
a spin polarized beam circulating in a storage ring. The authors employ
nonstandard notation and terminology in [1]: the ‘stable spin axis’ is
the spin closed orbit or the rotation axis of the one-turn spin map on
the closed orbit of the ring. A review of spin dynamics in accelerators
can be found in [2]. It is claimed in [1] that the spin tune mapping
technique can determine the orientation of the stable spin axis to micro-
radian accuracy. Note, however, that the components of the polarization
vector were not measured directly in [1]. Instead, the direction of the
stable spin axis was deduced via measurements of the spin tune and the
application of a theoretical model.

I have independently examined the analysis in [1] and my findings
differ from the claims made in [1]. In addition to identifying various
errors of algebra, I found there are several unquantified systematic
errors which are not treated in the analysis in [1]. Numerous priority
claims are also made in [1]. I comment on some of those priority claims
and supply references to prior work in the literature [3–9].

This paper is organized as follows. Section 2 presents the basic
notation and definitions. The spin maps for relevant beamlines and ring
elements, which are pertinent to the analysis, are shown in Section 3.
The solution for the spin tune is derived in Section 4. Differences with
the formulas in [1] are pointed out. Section 5 presents the exact solution
of an idealized model. It is shown that the solution derived in Section 4
agrees with the exact solution, up to terms of the first order in small
quantities. However, the formulas derived in [1] do not agree with
the exact model, even for the first order terms. In particular, for the
scenario studied in [1], the determination of the radial component of the
stable spin axis is subject to large uncertainties, which are not accounted
for in the analysis in [1]. Section 6 comments on some of the priority
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claims made in [1] and describes prior work on the subject. Section 7
concludes.

2. Basic notation and definitions

We refer the reader to [2] for a review of spin dynamics in ac-
celerators, including the electric dipole moment (EDM). We treat a
particle of mass 𝑚 and charge 𝑒, with velocity 𝑣 = 𝛽𝑐 and Lorentz
factor 𝛾 = 1∕

√

1 − 𝛽2. The canonical particle coordinate and conjugate
momentum are denoted by 𝑟 and 𝑝, respectively. Most of the analysis
in this paper employs coordinate-free notation. Where explicit vector
components are required, we follow [1] and employ the (right-handed
orthonormal) basis vectors (𝑒𝑥, 𝑒𝑦, 𝑒𝑧), respectively radial (outward),
vertical (up) and longitudinal (along the ring reference axis). We denote
the spin vector by 𝑠, treated as a semiclassical unit vector, with magnetic
moment anomaly 𝐺 = (𝑔 − 2)∕2. We treat the vector polarization only,
and denote the polarization vector by 𝑃 . Neglecting the EDM,1 the spin
precession equation of motion in the externally prescribed electric and
magnetic fields of the accelerator (�⃗� and �⃗�, respectively) is given by the
Thomas–BMT (Bargmann–Michel–Telegdi) equation [11,12]

𝑑𝑠
𝑑𝑡

= − 𝑒
𝑚𝑐

[(

𝐺 + 1
𝛾

)

�⃗� −
𝐺𝛾
𝛾 + 1

(𝛽 ⋅ �⃗�)𝛽

−
(

𝐺 + 1
𝛾 + 1

)

𝛽 × �⃗�
]

× 𝑠 . (2.1)

Radiation fields are ignored and we treat nonradiatively polarized
beams only. In this paper, the spin state of a particle is parameterized
by a two-component spinor and the spin map through a beamline is

1 The semiclassical relativistic spin precession equation including EDM terms is given
in [10]. See also the review [2].
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parameterized using a 2 × 2 SU(2) matrix. The one-turn spin map on
the closed orbit is conventionally written as follows2

𝑀OTM = exp{−𝑖𝜋𝜈�⃗� ⋅ 𝑛0} . (2.2)

Here 𝜈 is the spin tune and �⃗� is a vector of Pauli matrices. The rotation
axis of the one-turn spin map on the closed orbit is denoted by the unit
vector 𝑛0 (this vector is also known as the ‘spin closed orbit’). For off-axis
motion, the quantization axis of the spin eigenstates is denoted by 𝑛(𝑟, 𝑝),
which is a function of the orbital phase space [13]. Throughout most
of this paper, we shall restrict attention only to motion on the closed
orbit. For a steady state spin polarized beam circulating in a storage
ring, i.e. after transients have decohered, the polarization vector 𝑃 is
parallel to the average 𝑃 ∥ ⟨𝑛⟩, where the average is taken over the
orbital phase space. In general, this average is almost parallel to 𝑛0, and
this approximation will be employed below. (See [14, Sec. (3.3)] for a
model example where ⟨𝑛⟩ is not parallel to 𝑛0.)

The model treated in [1] was a racetrack ring, with a solenoid
in each of the diametrically opposed straight sections. Optically, the
two arcs (also the straight sections) were identical except for lattice
imperfections. The two solenoids were treated as localized zero-length
perturbations. We shall treat the above model in this paper. The spin
tune in the unperturbed ring (no solenoids) was denoted by 𝜈0𝑠 and in
the full ring by 𝜈𝑠. The authors called 𝜈0𝑠 the ‘unperturbed spin tune’ [1].
The authors also employed the notation 𝑐 instead of 𝑛0 for the spin closed
orbit of the unperturbed ring and called it the ‘stable spin axis.’ It was
assumed in [1] that the polarization vector in the unperturbed ring (after
transients had decohered) points along 𝑐.

Note that the authors in [1] claimed to measure the direction of
the stable spin axis but they did not measure the components of the
polarization vector directly. Instead they determined the values of two
parameters 𝑎+ and 𝑎− [1, eq. (31)] where it was stated ‘Consequently,
the determination of 𝑎± amounts to the determination of the projections
of the stable spin axis 𝑐 onto a plane spanned by the vectors 𝑛1 and
𝑛 r
2 .’ (The vectors 𝑛1 and 𝑛 r

2 will be defined below.) A beam dynamics
study using stored polarized deuterons was performed at COSY using
two electron cooler solenoids in diametrically opposed straight sections.
The authors generated artificial longitudinal ‘imperfection fields’ using
the electron cooler solenoids. The formalism in [1] presents an analysis
of the data from that experiment. The experimentally measured quantity
was the spin tune. The authors employed the term ‘spin tune jump’ to
refer to the change in the spin tune 𝛥𝜈𝑠 = 𝜈𝑠 − 𝜈0𝑠 , with the solenoids on
and off. The direction of the stable spin axis was therefore deduced via
measurements of the spin tune jump and a theoretical model.

3. Spin maps

The analysis below treats only rings where the spin closed orbit is
vertical everywhere, in the ideal design, and the ring has no Siberian
Snakes or spin rotators. See [15] for a review of Siberian Snakes and spin
rotators in storage rings. COSY is an example of such a ring. We shall
mostly employ the notation in [1] for ease of reference to make contact
with their analysis. Note, however, that their notation does not follow
the standard practice in the field. The origin was placed just before the
first solenoid. The one-turn spin map is, with an obvious notation [1,
eq. (21)]

𝑀OTM = 𝑀A2
𝑀S2𝑀A1

𝑀S1 . (3.1)

Here the term ‘arc’ includes the straight sections (lattice imperfections in
the straight sections can tilt the spin closed orbit away from the vertical).
The one-turn spin map of the unperturbed ring (i.e. without solenoids)
is parameterized via

𝑀R = 𝑀A2
𝑀A1

= exp{−𝑖𝜋𝜈0𝑠 �⃗� ⋅ 𝑐} . (3.2)

2 The closed orbit includes the effects of lattice imperfections and in general is not
equal to the ideal design orbit of the ring.

See [1, eq. (17)] and Eq. (2.2) above. The spin map of each arc is
parameterized via [1, eq. (24)]

𝑀Aj = exp
{

− 𝑖
2
𝜃𝑗 (�⃗� ⋅ �⃗�𝑗 )

}

(𝑗 = 1, 2) . (3.3)

Here 𝜃𝑗 is the spin rotation angle and �⃗�𝑗 is the spin rotation axis
of the spin map for each arc. It is assumed that 𝑐 is almost but not
exactly vertical. (It would be exactly vertical in the absence of lattice
imperfections). The arcs are almost but not exactly identical (i.e. they
would be exactly identical in the absence of lattice imperfections).
Hence �⃗�1 and �⃗�2 are both nearly vertical (but they are not assumed
to be equal). Also 𝜃1 ≃ 𝜋𝜈0𝑠 and 𝜃2 ≃ 𝜋𝜈0𝑠 (but they are not assumed to be
equal). The spin map of each solenoid is parameterized via [1, eq. (25)]

𝑀Sj = exp
{

− 𝑖
2
𝜒𝑗 (�⃗� ⋅ 𝑛𝑗 )

}

(𝑗 = 1, 2) . (3.4)

Here 𝜒𝑗 is the spin rotation angle and 𝑛𝑗 is the spin rotation axis of
each solenoid.3 The solenoids are treated as zero length elements. The
vectors 𝑛1 and 𝑛2 are nearly longitudinal (along the reference axis of the
ideal ring) but they are not assumed to be exactly equal. The angles 𝜒1
and 𝜒2 were variable parameters in the analysis in [1]. In addition let
us define [1, eq. (31)]

𝜒± =
𝜒1 ± 𝜒2

2
. (3.5)

In addition to 𝑛1 and 𝑛2, the authors also employed a vector 𝑛 r
2 defined

via [1, eq. (26)]

𝑀−1
A1

𝑀S2𝑀A1
≡ exp

{

− 𝑖
2
𝜒2(�⃗� ⋅ 𝑛 r

2 )
}

. (3.6)

It is given by [1, eq. (27)]

𝑛 r
2 = cos 𝜃1 𝑛2 + sin 𝜃1 (𝑛2 × �⃗�1) + (1 − cos 𝜃1)(�⃗�1 ⋅ 𝑛2)�⃗�1 . (3.7)

The authors then defined the spin map of the ‘combined artificial
imperfection’ via 𝑀AI = 𝑀−1

A1
𝑀S2𝑀A1

𝑀S1 [1, eqs. (23) and (28)]. The
full one-turn spin map is then given by 𝑀OTM = 𝑀R𝑀AI. The authors
also defined the two variables [1, eq. (31)]

𝑎± = 𝑐 ⋅ 𝑛 r
2 ± 𝑐 ⋅ 𝑛1 . (3.8)

The above expressions are all in coordinate-free notation. The authors
then made various approximations, using a coordinate basis, to derive
the approximate expressions up to the first order in small quantities [1,
eq. (78)]

𝑎± ≃ cos(𝜋𝜈0𝑠 )𝑐𝑧 − sin(𝜋𝜈0𝑠 )𝑐𝑥 ± 𝑐𝑧 . (3.9)

For later use, I shall define the two parameters

𝛼± = 𝑐 ⋅ 𝑛 r
2 ± 𝑐 ⋅ 𝑛1 . (3.10)

In coordinate-free notation, these are the same as 𝑎± in Eq. (3.8).
However, when expanded in components, I shall show their values
are different from those in Eq. (3.9). The matter will be treated
below.

4. Spin tune

The spin tune of the full ring (with solenoids) is obtained from the
parameterizations of the spin maps above and is obtained via cos(𝜋𝜈𝑠) =

3 The vectors 𝑛1 and 𝑛2 should not be confused with the quantization axis of the spin
eigenstates, which is conventionally denoted by 𝑛 by workers in the field, see, e.g. [2,13].
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1
2 Tr(𝑀R𝑀AI). Then, recalling 𝜈𝑠 = 𝜈0𝑠 + 𝛥𝜈𝑠,

cos(𝜋[𝜈0𝑠 + 𝛥𝜈𝑠]) = cos(𝜋𝜈0𝑠 ) cos
𝜒1
2

cos
𝜒2
2

− sin(𝜋𝜈0𝑠 )
[

sin
𝜒1
2

cos
𝜒2
2

(𝑐 ⋅ 𝑛1)

+ cos
𝜒1
2

sin
𝜒2
2

(𝑐 ⋅ 𝑛 r
2 )

]

−
[

cos(𝜋𝜈0𝑠 ) (𝑛
r

2 ⋅ 𝑛1) + sin(𝜋𝜈0𝑠 ) 𝑐 ⋅ (𝑛
r

2 × 𝑛1)
]

× sin
𝜒1
2

sin
𝜒2
2

.

(4.1)

The above expression corrects some errors of algebra in [1, eq. (C1)].
The above expression is an exact formula, and is in coordinate-free
notation. I now expanded the above expression in vector components. I
retained all the components of the various vectors in all the vector dot
and cross products. The zeroth order (or ‘large’) components are 𝑐𝑦 ≃ 1,
𝑚1𝑦 ≃ 1, 𝑚2𝑦 ≃ 1, 𝑛1𝑧 ≃ 1 and 𝑛2𝑧 ≃ 1. All the other vector components
are of the first order in small quantities. I also set 𝜃𝑗 = 𝜋𝜈0𝑠 + 𝛥𝜃𝑗 , where
|𝛥𝜃𝑗 | is a small angle. Then the term in the square brackets in the last
line of Eq. (4.1) evaluated to

cos(𝜋𝜈0𝑠 ) (𝑛
r
2 ⋅ 𝑛1) + sin(𝜋𝜈0𝑠 ) 𝑐 ⋅ (𝑛

r
2 × 𝑛1)

≃ cos(𝛥𝜃1) − sin(𝛥𝜃1)(𝑛1𝑥 − 𝑛2𝑥)

≃ 1 .

(4.2)

The expression equals unity up to corrections of the second order in
small quantities, which we neglect. Then, approximating it to unity in
Eq. (4.1) yields

cos(𝜋𝜈0𝑠 ) − cos(𝜋[𝜈0𝑠 + 𝛥𝜈𝑠]) ≃ [1 + cos(𝜋𝜈0𝑠 )] sin
2 𝜒+
2

− [1 − cos(𝜋𝜈0𝑠 )] sin
2 𝜒−
2

+
𝛼+
2

sin(𝜋𝜈0𝑠 ) sin𝜒+

−
𝛼−
2

sin(𝜋𝜈0𝑠 ) sin𝜒− .

(4.3)

This has a similar form to [1, eq. (30)] but corrects some errors of
algebra in the latter. Retaining only terms of the first order in small
quantities, I obtained the following expressions for 𝛼± (see Eq. (3.10))

𝛼± ≃ cos(𝜋𝜈0𝑠 ) 𝑐𝑧 + 𝑛2𝑦 + [1 − cos(𝜋𝜈0𝑠 )]𝑚1𝑧

− sin(𝜋𝜈0𝑠 ) (𝑐𝑥 − 𝑚1𝑥)

± (𝑐𝑧 + 𝑛1𝑦) .

(4.4)

∙ There are several additional terms not present in the analysis
in [1] (see Eq. (3.9) and [1, eq. (78)]).

∙ The additional terms are of the same order as 𝑐𝑥 and 𝑐𝑧 and
cannot a priori be neglected.

∙ In particular, 𝑐𝑥 always appears in the combination 𝑐𝑥 − 𝑚1𝑥.
Since the stable spin axis 𝑐 is non-vertical because of lattice
imperfections, and the vectors �⃗�1 and �⃗�2 are also non-vertical for
the same reason, the value of 𝑚1𝑥 will in general be comparable
to 𝑐𝑥. The values of 𝑚1𝑥 and 𝑚1𝑧 yield unquantified systematic
errors which are not treated in the analysis in [1].

5. Exact solution of idealized model

It is possible to derive the exact solution for the spin tune for a model
with (a) two identical arcs, and (b) parallel spin rotation axes for the
two ‘perturbation fields.’ The ‘perturbations’ are treated as zero length
elements. The one-turn spin map of the unperturbed ring (i.e. only the
two arcs) is

𝑀unpert = exp{−𝑖𝜋𝜈0𝑠 �⃗� ⋅ 𝑛0 } . (5.1)

See Section 2 for details of notation and definitions. Hence the spin map
of each arc is

𝑀arc = exp
{

− 𝑖
2
𝜋𝜈0𝑠 �⃗� ⋅ 𝑛0

}

. (5.2)

The spin maps of the ‘perturbations’ are

𝑀𝑗 = exp
{

− 𝑖
2
𝜒𝑗 �⃗� ⋅ 𝜁

}

(𝑗 = 1, 2) . (5.3)

The spin rotation axis 𝜁 is the same in both elements. The full one turn
spin map is then 𝑀OTM = 𝑀arc𝑀2𝑀arc𝑀1. Let the spin tune of the full
ring be 𝜈𝑠 = 𝜈0𝑠 + 𝛥𝜈𝑠. Then cos(𝜋𝜈𝑠) =

1
2 Tr(𝑀OTM) and

cos(𝜋𝜈0𝑠 ) − cos(𝜋[𝜈0𝑠 + 𝛥𝜈𝑠]) = [1 + cos(𝜋𝜈0𝑠 )] sin
2 𝜒+
2

− [1 − cos(𝜋𝜈0𝑠 )] sin
2 𝜒−
2

+ (𝑛0 ⋅ 𝜁 ) sin(𝜋𝜈0𝑠 ) sin𝜒+

− (𝑛0 ⋅ 𝜁 )2[1 − cos(𝜋𝜈0𝑠 )]

×
(

sin2
𝜒+
2

− sin2
𝜒−
2

)

.

(5.4)

Let us compare this with the approximate expressions derived above.
We set 𝑐 = �⃗�1 = �⃗�2 = 𝑛0. Let us also set 𝜁 to be longitudinal, i.e. 𝜁 = 𝑒𝑧.
Then 𝑛1 = 𝑛2 = 𝜁 = 𝑒𝑧. Then 𝑛0 ⋅ 𝜁 = 𝑐 ⋅ 𝑒𝑧 = 𝑐𝑧. Although the exact
solution of the idealized model is valid for arbitrary 𝑐, for comparison
with the previous results we say the term in the last line in Eq. (5.4) is
of second order 𝑂(𝑐2𝑧 ) and we neglect it. Substituting in Eq. (5.4) then
yields, to the first order in small quantities,

cos(𝜋𝜈0𝑠 ) − cos(𝜋[𝜈0𝑠 + 𝛥𝜈𝑠]) ≃ [1 + cos(𝜋𝜈0𝑠 )] sin
2 𝜒+
2

− [1 − cos(𝜋𝜈0𝑠 )] sin
2 𝜒−
2

+ 𝑐𝑧 sin(𝜋𝜈0𝑠 ) sin𝜒+ .

(5.5)

The answer (even the exact result in Eq. (5.4)) depends only on 𝑐𝑧 and
not on the radial component 𝑐𝑥.

∙ Let us compare Eq. (5.5) with the expression derived in Eqs. (4.3)
and (4.4). From Eq. (4.4),

𝛼+ = cos(𝜋𝜈0𝑠 ) 𝑐𝑧 + [1 − cos(𝜋𝜈0𝑠 )] 𝑐𝑧 − sin(𝜋𝜈0𝑠 ) (𝑐𝑥 − 𝑐𝑥) + 𝑐𝑧

= 2𝑐𝑧 .
(5.6)

Next
𝛼− = cos(𝜋𝜈0𝑠 ) 𝑐𝑧 + [1 − cos(𝜋𝜈0𝑠 )] 𝑐𝑧 − sin(𝜋𝜈0𝑠 ) (𝑐𝑥 − 𝑐𝑥) − 𝑐𝑧

= 0 .
(5.7)

Substituting into Eq. (4.3) yields

cos(𝜋𝜈0𝑠 ) − cos(𝜋[𝜈0𝑠 + 𝛥𝜈𝑠]) ≃ [1 + cos(𝜋𝜈0𝑠 )] sin
2 𝜒+
2

− [1 − cos(𝜋𝜈0𝑠 )] sin
2 𝜒−
2

+ 𝑐𝑧 sin(𝜋𝜈0𝑠 ) sin𝜒+ .

(5.8)

This agrees with Eq. (5.5). The term in 𝑐𝑥 cancels out.
∙ The analysis in [1] yields the following. First, from [1, eq. (78)]

(see also Eq. (3.9) above)

𝑎+ ≃ [cos(𝜋𝜈0𝑠 ) + 1]𝑐𝑧 − sin(𝜋𝜈0𝑠 )𝑐𝑥 , (5.9a)
𝑎− ≃ [cos(𝜋𝜈0𝑠 ) − 1]𝑐𝑧 − sin(𝜋𝜈0𝑠 )𝑐𝑥 . (5.9b)

Now [1, eq. (30)] states

cos(𝜋𝜈0𝑠 ) − cos(𝜋[𝜈0𝑠 + 𝛥𝜈𝑠]) = [1 + cos(𝜋𝜈0𝑠 )] sin
2 𝜒+
2

− [1 − cos(𝜋𝜈0𝑠 )] sin
2 𝜒−
2

−
𝑎+
2

sin(𝜋𝜈0𝑠 ) sin𝜒+

+
𝑎−
2

sin(𝜋𝜈0𝑠 ) sin𝜒− .

(5.10)
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Substitution using Eq. (5.9) yields

cos(𝜋𝜈0𝑠 ) − cos(𝜋[𝜈0𝑠 + 𝛥𝜈𝑠]) = [1 + cos(𝜋𝜈0𝑠 )] sin
2 𝜒+
2

− [1 − cos(𝜋𝜈0𝑠 )] sin
2 𝜒−
2

−
[cos(𝜋𝜈0𝑠 ) + 1]𝑐𝑧 − sin(𝜋𝜈0𝑠 )𝑐𝑥

2

× sin(𝜋𝜈0𝑠 ) sin𝜒+

+
[cos(𝜋𝜈0𝑠 ) − 1]𝑐𝑧 − sin(𝜋𝜈0𝑠 )𝑐𝑥

2

× sin(𝜋𝜈0𝑠 ) sin𝜒− .

(5.11)

This does not agree with Eq. (5.5), which was derived from
the exact solution of the idealized model. In particular, the
coefficient of the term in 𝑐𝑥 is sin2(𝜋𝜈0𝑠 )(sin𝜒+ − sin𝜒−)∕2, and
is not zero.

∙ The exact solution of the idealized model shows that, if the
two solenoid axes are exactly parallel, and if the two arcs are
exactly identical, then measurements of the spin tune alone
will not yield information about the radial component of the
stable spin axis. In practice, the two solenoid axes are nearly
parallel and the spin rotations in the two arcs of COSY are nearly
identical (they differ only because of lattice imperfections). This
indicates that for the scenario studied in [1], the determination
of the radial component of the stable spin axis is subject to large
uncertainties.

6. Comments on priority claims

The analysis in [1] makes numerous priority claims. I comment here
on some of those claims and supply references to prior work in the
literature.

6.1. Stable spin axis

∙ Abstract of [1]: ‘‘Up to now, the stable spin axis has never been
determined experimentally, . . . ’’

∙ Introduction of [1]: ‘‘. . . and we report here about the first ever
direct measurement of the stable spin axis in a storage ring’’.

∙ Section VI (‘‘Summary and Outlook’’) of [1] (italics in original):
‘‘We reported about the first ever attempt for the in situ determi-
nation of the spin stable axis of polarized particles in a storage
ring’’.

The stable spin axis was determined in experiments using spin polarized
proton beams at the IUCF Cooler Ring in 1989 [3]. Vertically polarized
protons were injected into the IUCF Cooler Ring. The integrated mag-
netic field of the electron cooler solenoids of the ring were varied, so
as to generate an artificial ‘imperfection field’ to tilt the direction of the
stable spin axis away from the vertical. The polarimeter detected the
vertical and radial components of the steady state polarization vector. A
graph of the data is displayed in [3, Fig. 2]. (Note that the Siberian Snake
in the IUCF Cooler Ring was switched off in these measurements.) The
dashed curves indicate the theoretical calculations, for the parameters
of the experiment, and agree well with the data.

6.2. Measurement of stable spin axis at two locations in the ring

∙ Abstract of [1]: ‘‘. . . and for the first time, the angular orientation
of the stable spin axis at two different locations in the ring has
been determined . . . ’’.

The HERA lepton ring was equipped with spin rotators, to deliver
longitudinally polarized electron and positron beams to experiments.
(HERA is the only high energy storage ring to attain longitudinal
positron polarization.) The HERA lepton ring was equipped with a
transverse laser Compton backscattering polarimeter, which measured
the vertical polarization in the arcs [4] and a longitudinal laser Compton
backscattering polarimeter [5], which measured the longitudinal polar-
ization in the east straight section (the HERMES internal atomic gas jet
experiment). The two polarization values were equal, which confirmed
that the stable spin axis had been correctly rotated from vertical in the
arcs to longitudinal in the HERMES straight section. If the polarization
had not been vertical in the arcs and/or if the polarization had not been
longitudinal in the straight section, the two polarization values would
not have been equal.

In particular, to overcome the depolarizing effects on the radiative
polarization due to so-called ‘spin diffusion’ in high energy electron
rings, special care was taken to ensure that the equilibrium polarization
direction was very close to the vertical in the HERA arcs [6]. See in
particular [6, Secs. (2.2) and (2.4)] for a description of the optimization
procedures. Quoting from [6, Sec. (2.4)], ‘Before correction, the rms tilt
|𝛿n0| is 19.4 mrad, and the equilibrium polarization is 27.1%; with each
of the 8 harmonic components set to its corresponding 𝐷opt, the rms tilt
is reduced to 12.5 mrad and 𝑃max is 81.0%.’ Here the vector n0 denotes
the spin closed orbit (stable spin axis) and 𝑃max denotes the asymptotic
degree of the radiative polarization. See [2] for an overview of radiative
polarization in high energy storage rings.

HERA underwent an energy and luminosity upgrade, to HERA-II.
Spin rotators were installed in the H1 and ZEUS interaction regions.
The detector solenoids were no longer compensated by anti-solenoids,
and combined function magnets were introduced to reduce the beta
functions at the interaction points. In addition the H1 detector solenoid
was longitudinally off center with respect to the interaction point. This
required careful mapping of the magnetic fields, for the passage of
polarized beams through the interaction regions. See [7] for details
of the project. HERA-II successfully delivered longitudinally polarized
lepton beams at all the three interaction points of the ring. See [8] for an
overview of operations with longitudinally polarized beams in HERA-II.

The RHIC storage ring partly operates as a polarized proton collider.
The polarization is vertical in the arcs and spin rotators are employed
to deliver longitudinal/radial/vertical polarization to the STAR and
PHENIX detectors. See [9] for details of the commissioning of the RHIC
spin rotators. It is stated in [9] that ‘In order to have a verification
of polarization direction at the experiments, both PHENIX and STAR
developed local polarimeters for measuring transverse components of
the polarization.’

7. Conclusion

The technique of so-called ‘spin tune mapping’ was described in [1],
as a means to determine the spin closed orbit (or ‘stable spin axis’) for
a spin polarized beam circulating in a storage ring. Two electron cooler
solenoids were employed to generate artificial imperfection fields in an
otherwise planar ring. Due to lattice imperfections, the spin closed orbit
is almost but not exactly vertical everywhere. The components of the
spin closed orbit were not determined by measuring the polarization
vector directly; instead they were deduced via measurements of the spin
tune and the application of a theoretical model.

I have independently examined the analysis in [1]. In addition to
various errors of algebra, there are several unquantified systematic
errors which are not treated in the analysis in [1]. The formulas in [1]
also do not agree with the solution derived from an exact model, in the
special case where the ring arcs are identical and the solenoid axes are
parallel. In particular, for the scenario studied in [1], the determination
of the radial component of the spin closed orbit is subject to large
uncertainties. I also commented on various priority claims in [1] and
supplied references to prior work in the literature [3–9].
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