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General properties of astrophysical reaction rates in
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E-mail: Thomas.Rauscher@unibas.ch

Abstract. Fundamental differences in the prediction of reaction rates with intermediate and
heavy target nuclei compared to the ones with light nuclei are discussed, with special emphasis
on stellar modifications of the rates. Ground and excited state contributions to the stellar rates
are quantified, deriving a linear weighting of excited state contributions despite of a Boltzmann
population of the nuclear states. A Coulomb suppression effect of the excited state contributions
is identified, acting against the usual Q-value rule in some reactions. The proper inclusion
of experimental data in revised stellar rates is shown, containing revised uncertainties. An
application to the s-process shows that the actual uncertainties in the neutron capture rates
are larger than would be expected from the experimental errors alone. Sensitivities of reaction
rates and cross sections are defined and their application in reaction studies is discussed. The
conclusion provides a guide to experiment as well as theory on how to best improve the rates
used in astrophysical simulations and how to assess their uncertainties.

1. Introduction

Explosive nucleosynthesis environments differ from hydrostatic ones by showing higher
temperatures and sometimes also much higher proton or neutron densities. As a consequence,
the nucleosynthesis processes cannot only extend to nuclei with larger masses than those
involved in hydrostatic burning but may also include short-lived isotopes. In addition, the
difference between stellar and laboratory reaction rates is more pronounced, due to the higher
temperatures encountered as well as the higher average level density in heavier nuclei. This
leads to fundamentally different challenges in the prediction and measurement of the involved
reaction cross sections and rates than for light nuclei. An overview of some of the relevant effects
is given here. For further details, see [1–3] and the works cited hereafter.

After introducing the basic definition of the stellar rate in section 2.1, the size of the individual
contributions from ground and excited states is discussed in 2.2. The relation between forward
and reverse rates is shown in section 2.3 and exceptions to the general rules are pointed out in 2.4.
The connection between experimental data and stellar rates is studied in section 2.5. Equilibria
appearing in high-temperature burning are briefly introduced in section 3 before continuing to
the discussion of sensitivities of rates and cross sections to variations in nuclear properties in
section 4. The paper is concluded by a brief outline of how to best proceed in selecting nuclides
and reactions for future studies.
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2. Stellar rates and impact of thermal excited state population

2.1. Basic definition

The astrophysical reaction rate r∗ for an interaction between two particles or nuclei in a stellar
environment is obtained by folding the Maxwell-Boltzmann energy distribution Φ, describing the
thermal c.m. motion of the interacting nuclei in a plasma of temperature T , with the probability
σ∗ that the reaction occurs and by multiplying the result with the number densities na, nA, i.e.,
number of interacting particles in a unit volume,

r∗ =
nanA

1 + δaA

∫

∞

0
σ∗(E)Φ(E,T ) dE =

nanA

1 + δaA
R∗ . (1)

The stellar reactivity (or rate per particle pair) is denoted by R∗. To avoid double counting
of pairs, the Kronecker symbol δaA is introduced. It is unity when the nuclei a and A are the
same and zero otherwise. The asterisk superscript indicates stellar quantities, i.e., including
the effect of thermal population of excited nuclear states in a stellar plasma. Depending on
temperature and nuclear level structure, a fraction of nuclei is present in an excited state in the
plasma, instead of being in the ground state (g.s.). This has to be considered when calculating
the interactions and rates. The population Pi = pi/p0 of an excited level with spin Ji and energy
Ei relative to the g.s. with spin J0 is given by [4, 5]

Pi =
2Ji + 1

2J0 + 1
exp

(

−
Ei

kT

)

. (2)

The stellar cross section σ∗ appearing in equation (1) can then be shown to be [1]

σ∗(E,T ) = σeff (E)
G0(T ) =

1
∑

i Pi

∑

i

∑

j

2Ji + 1

2J0 + 1

E − Ei

E
σi→j(E − Ei)

=
1

∑

i Pi

∑

i

∑

j

2Ji + 1

2J0 + 1
Wiσ

i→j(E − Ei) , (3)

and involves a weighted sum over transitions from all initial excited states i up to the interaction
energy E, leading to all accessible final states j. As usual, cross sections for individual transitions
σi→j are zero for negative energies. The quantity G0 =

∑

i Pi is nothing else than the partition
function of the target nucleus normalized to the ground state spin and σeff is usually called
effective cross section [6].

2.2. Contributions of ground state and excited states to the astrophysical reaction rate

A number of important conclusions can be drawn from equation (3) [1, 2]. The fact that
Maxwell-Boltzmann energy-distributed projectiles act on each excited state leads to a linear
energy weighting

Wi =
E − Ei

E
= 1−

Ei

E
(4)

of the contributions from excited states in the effective cross section, although their population
pi = (2Ji + 1) exp (−Ei/(kT )) falls off exponentially with increasing excitation energy Ei. The
situation is sketched in figure 1 for a reaction A(a, b)B with positive reaction Q-value, where a
and b can be a particle or a photon. The relevant energies E are in the energy range contributing
most to the integral in equation (1). These energies and the location of the maximum of
the integrand can be found in [7]. The simple formula for estimating the Gamow window
(see, e.g., [8, 9]) from the charges of projectile and target is only applicable when the energy
dependence of the cross section is fully given by the entrance channel. This has been found
inadequate for many reactions except those involving light nuclei [7, 10,11].
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Figure 1. Schematic view of the relative effective weights WA and WB in the initial and
final nucleus, respectively, in the reaction A(a, b)B under the assumption of a positive reaction
Q-value Q = QAa.

The linear weighting of the excited state contributions leads to a larger range of excited
states contributing to the stellar rate than naively expected from the Boltzmann weight pi.
Rates for light nuclei do not exhibit large contributions from excited states and measurements
of laboratory cross sections σ0 =

∑

j σ
0→j, including only transitions proceeding on the nuclear

g.s., are often sufficient to also derive the stellar rate. This is not only due to the larger level
spacings compared to heavier nuclei but also because their astrophysical interaction energies are
lower in general. The number of possibly contributing levels within the energy range up to E
is the determining quantity. On the other hand, rates for intermediate and heavy target nuclei
are often dominated by transitions from excited states, both because those nuclei have a larger
level density and the relevant interaction energies are also higher, especially for charged particle
reactions.

It is interesting to know the relative contribution Xi of a specific level i to the total stellar
rate r∗. This is given by [3]

Xi(T ) =
2Ji + 1

2J0 + 1
e−Ei/(kT )

∫

σi(E)Φ(E,T )dE
∫

σeff(E)Φ(E,T )dE
, (5)

where σi =
∑

j σ
i→j , as before. For the ground state, this simplifies to [12]

X0(T ) =

∫

σ0(E)Φ(E,T )dE
∫

σeff(E)Φ(E,T )dE
. (6)

It is very important to note that this is different from the simple ratio R0/R
∗ of g.s. and stellar

reactivity, respectively (see section 2.5)!
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Figure 2. Ground state contributions X = X0 to stellar (n,γ) rates at kT = 30 keV for all
nuclides contained in [13]. The uncertainties were calculated as explained in section 2.5.

The relative contribution Xi has several convenient properties. Its upper bound is a value
of unity which translates into 100% contribution to the stellar rate, i.e., the stellar rate is fully
determined by the reaction cross section of level i. Furthermore, it only assumes values in the
range 0 ≤ Xi ≤ 1. The value of X0 therefore decreases monotonically with increasing plasma
temperature T . Finally, when including possible uncertainties of reaction model predictions, the
uncertainty in Xi scales inversely with the value of Xi but keeping large values of Xi large and
small ones small [12] (see also section 2.5).

Complete tables of g.s. contributions X0 for reactions on target nuclei between the driplines
from 10 ≤ Z ≤ 83 are given in [2]. As an example, figure 2 shows X0 for (n,γ) rates close to
stability, required for s-process studies. Although the typical s-process temperature of kT = 30
keV [14] is quite low compared to level spacings, considerable excited state contributions (i.e.,
X0 ≪ 1) are found for a surprisingly large number of target nuclei. This is due to the linear
fall-off of weights with excitation energy, as discussed above. Naturally, the excited state
contributions are largest (i.e., X0 is smallest) in the region of deformed nuclei because they
exhibit higher level densities. Figure 3 shows X0 for the same nuclei but for a temperature of
2.5 GK, typical for γ-process nucleosynthesis [15, 16]. The fast decrease of X0 with increasing
temperature can be seen clearly.

Although not discussed in further detail here, it is worth mentioning that also weak
interactions and decays are affected by the thermal population of excited states.
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Figure 3. Same as figure 2 but for T = 2.5 GK. Note the logarithmic scale.

2.3. Comparison between forward and reverse rate

The well-known reciprocity relation for nuclear reactions shows the relation between the cross
section σi→j

Aa of a reaction proceeding from state i in nucleus A to the final state j in nucleus B

and its reverse σj→i
Bb , starting from nucleus B, to be [10,17]

σj→i
Bb (EBb) =

1 + δBb

1 + δAa

(2Ji + 1)(2Ja + 1)

(2Jj + 1)(2Jb + 1)

mAaEAa

mBbEBb
σi→j
Aa (EAa) , (7)

where mAa, mBb are the reduced masses and EAa, EBb the center-of-mass energies relative to
the levels i, j, respectively.1 If the ejectile b is not a particle but a photon, the reciprocity
relation reads

σj→i
Bγ (Eγ) =

1

1 + δAa

(2Ji + 1)(2Ja + 1)

2Jj + 1
c2
mAaEAa

E2
γ

σi→j
Aa (EAa) . (8)

Using equations (7), (8) it is straightforward to show that the stellar reactivities defined
with the effective cross section – connecting all initial states to all final states – also obey
reciprocity [1, 4, 6]. This only holds when using the stellar and effective cross sections σ∗ and
σeff , respectively, in the calculation of the reactivity, not with cross sections σi for a single state

1 Throughout the paper it is assumed that a, b are light nuclei (or photons) for which excited states do not have
to be taken into account.
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(and therefore also not for laboratory cross sections σ0). The reciprocity relations for a reaction
A(a, b)B and its reverse reaction B(b, a)A are [1, 6, 10]

R∗

Bb

R∗

Aa

=
(2JA

0 + 1)(2Ja + 1)

(2JB
0 + 1)(2Jb + 1)

GA
0 (T )

GB
0 (T )

(

mAa

mBb

)3/2

e−QAa/(kT ) (9)

when a, b are particles, and

R∗

γ

R∗

Aa

=
(2JA

0 + 1)(2Ja + 1)

(2JB
0 + 1)

GA
0 (T )

GB
0 (T )

(

mAakT

2π~2

)3/2

e−QAa/(kT ) (10)

when b is a photon. The normalized partition functions GA
0 and GB

0 of the nuclei A and B,
respectively, are defined as before. The photodisintegration reactivity

R∗

γ =

∫

∞

0
σ∗

γ(E)ΦPlanck(E,T ) dE (11)

includes a stellar photodisintegration cross section σ∗

γ(E) defined in complete analogy to the
stellar cross section σ∗ in equation (3).

In relating the capture rate of A(a, γ)B to the photodisintegration rate λ∗

Bγ = nBR
∗

γ ,

however, it has to be assumed that the denominator exp(E/(kT ))−1 of the Planck distribution
ΦPlanck for photons appearing in equation (11) can be replaced by exp(E/(kT )), similar to
the one of the Maxwell-Boltzmann distribution Φ with the same temperature T . The validity
of this approximation has been investigated independently several times [1, 5, 10, 18, 19]. The
contributions to the integral in (11) have to be negligible at the low energies where Φ and
ΦPlanck differ considerably. This is assured by either a sufficiently large and positive QAa, which
causes the integration over the Planck distribution to start not at zero energy but rather at a
sufficiently large threshold energy, or by vanishing effective cross sections at low energy due to,
e.g., a Coulomb barrier. It turns out that the change in the denominator is a good approximation
for the calculation of the rate integrals and introduces an error of less than a few percent for
astrophysically relevant temperatures and rate values. The assumption may not be valid for
s-wave neutron captures with very small (of the order of Q . kT ) or negative Q-values but
the required correction still is only a few % as can be shown in numerical comparisons between
photodisintegration rates calculated with the two versions of the denominator [1]. Generally,
larger errors appear at lower temperature. This results in astrophysical irrelevance of the
errors in many cases because either the rates are too low (especially for rates involving charged
projectiles) or the target nuclei in question are so short-lived that they will never be produced
at low plasma temperature. The largest error found was between 50 and 100% for a few heavy
nuclei at the driplines for proton- or α-capture at T < 0.3 GK. For neutron captures, the errors
when applying the standard approximation for the reverse rate were never larger than 10% at
any investigated temperature, even at the driplines. For s-process neutron captures, the error
is completely negligible. It is also negligible for photodisintegrations and their reverse captures
in the γ-process, even though they involve (α,γ) reactions with strongly negative Q-values. For
more details, see [1].

The reciprocity relations shown above are very important in reaction networks. Specifying
the reactivity of only one reaction direction as input and employing the expressions (9) and (10)
to compute the reverse direction avoids numerical inconsistencies which may arise when forward
and reverse rates are calculated separately (or even from different sources). The proper balance
between the two reaction directions can only be achieved in such a treatment. Furthermore,
simplified equations for reaction equilibria (see Sec. 3) can be derived which prove important in
the modeling and understanding of nucleosynthesis at high temperature.
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Table 1. Ground state contributions X0 for selected (γ,n) reactions at 2.5 GK.

Target X0 Target X0 Target X0

86Sr 0.00059 186W 0.00049 198Pt 0.0018
90Zr 0.00034 185Re 0.00021 197Au 0.00035
96Zr 0.0061 187Re 0.00024 196Hg 0.00043
94Mo 0.0043 186Os 0.00016 198Hg 0.00084
142Nd 0.0028 190Pt 0.000069 204Hg 0.0088
155Gd 0.0012 192Pt 0.00011 204Pb 0.0059

Since the astrophysically relevant energies of the reverse reaction B(b, a)A are related to
the ones of the forward reaction by Erev = E + Q (see figure 1), it is obvious that transitions
from excited states contribute more to the stellar rate for reactions with negative Q-value. The
weights WB decline more slowly and reach to higher excitation energy than the weights WA

(see equation 4 and figure 1). This is especially pronounced in photodisintegrations. Table 1
gives examples for g.s. contributions to (γ,n) rates of intermediate and heavy target nuclides at
a temperature typical for the astrophysical γ-process, involving the photodisintegration of such
nuclei. These numbers have to be compared to the ones for the neutron captures shown in figure
3. It is obvious that they are tiny in comparison.

2.4. Coulomb suppression of excited state contributions

A recently identified effect acts against the general Q-value rule for excited state contributions
introduced in the previous subsection [20,21]. It has to be realized that the relative interaction
energies EAa = E − Ei and EBb = E + Q − Ej decrease with increasing excitation energies
Ei, Ej. If the cross sections for the individual transitions from the states i, j strongly decrease
with lower interaction energy, transitions from higher lying excited states (at larger Ei,j) cannot
contribute much to the stellar rate even when their weights are non-negligible. This is the case
for charged particle reactions. When the Coulomb barrier of a reaction with negative Q-value
is much larger in the entrance channel than in the exit channel (examples for this are charged
particles in one channel and neutrons or photons in the other), it may offset the larger energy
range and suppress excited state contributions on heavy nuclei.

In a large-scale study comparing the contribution of excited states to the stellar rates for
forward and reverse reactions2, more than 1200 such cases were found (which is a small number
considering that a total of about 60000 reactions was sampled) [20, 21]. Not all of them are
interesting for astrophysical applications. Noteable cases are (α,γ) reactions at and above Sn,
which are important in the γ-process, and (p,n) reactions on proton-rich nuclei, appearing in
the γ- and νp-processes [22]. Figure 4 illustrates the Coulomb suppression effect for (α,γ) and
(α,n) reactions. There is a maximum |Q| in the range of negative Q-values appearing in each
isotopic chain, indicating how negative the Q-value may be while still ensuring that the reaction
rate has smaller excited state contributions than those of its reverse reaction. It can clearly be
seen that this maximum depends on the charge of the target. The exceptions close to Z = 50
are due to the low nuclear level densities of even-even nuclides around Sn.

2 Note that although the study was using the SEF (see section 2.5) the conclusions still hold.
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Figure 4. Reaction Q-values of (α,γ) and (α,n) reactions with smaller excited state contribution
than those of their reverse reaction despite of Q < 0, due to the Coulomb suppression effect.

2.5. Implications for the experimental determination of astrophysical reaction rates

Laboratory measurements can only determine the g.s. cross section σ0 (or the cross section of
a long-lived isomeric state). As explained above, this is only sufficient for the determination
of the stellar reactivity when the contribution X0 of this level is close to unity. Designing an
experiment, it should be taken care to measure a reaction with the largest possible X0. This
also implies that the reaction should be measured in the direction of largest X0. As derived
above, this usually is the direction of positive Q-value with some exceptions. For example,
photodisintegration of g.s. nuclei always only provides a tiny fraction of the stellar rate (see
table 1) and thus can never be used to constrain a stellar rate for intermediate and heavy nuclei.

The stellar rate can only be derived by combining the experimental data with theory when
X0 < 1. In the past, the stellar enhancement factor (SEF)

fSEF =
R∗

R0
(12)

was used. Therein, R0 is the reactivity obtained from folding the experimentally obtained cross
section on a g.s. (or isomeric state) with a Maxwell-Boltzmann distribution, similar as it is done
with the stellar cross section in equation (1). It was pointed out in [12], however, that R∗ and
R0 can be similar by chance, even when the X0 are very different. Thus, the SEF is not a
suitable measure of the contribution to the stellar rate and it is incorrect to use it for connecting
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laboratory results to stellar reactivities, although this was done frequently in the past3.
Strictly speaking, the experimental cross section can only replace one of the contributions to

the stellar rate while the others remain unconstrained by the data. Knowing X0 and the theory
values for R0 and R∗, the proper inclusion of a new experimental reactivity Rexp

0 into a new
stellar rate is performed as follows. The experimental reactivity cannot be simply multiplied
by fSEF but rather the theoretical stellar reactivity has to be modified to yield the new stellar
reactivity, [3]

R∗

new = f∗R∗ , (13)

with the renormalization factor

f∗ = 1 +X0

(

Rexp
0

R0
− 1

)

(14)

containing the experimental result. Note that the renormalization factor is, of course,
temperature-dependent.

Since experimental cross sections are always given with a connected uncertainty (an “error
bar”) and the ultimate goal of a measurement is to reduce the uncertainty inherent in the
purely theoretical prediction, it is of particular interest to know the final uncertainty of the new
stellar reactivity R∗

new. It is evident that the new uncertainty will only be determined by the
experimental one when X0 is large. Otherwise the experiment does not have much impact on
the stellar reactivity and also not on its uncertainty. Using X0, also the new uncertainty can
be derived. First, the uncertainty of Rexp

0 has to be calculated from the errors in the measured
cross sections. It is convenient to use uncertainty factors as is the standard in astrophysical
investigations. An uncertainty factor Uexp ≥ 1 implies that the “true” value of Rexp

0 is in
the range Rexp

0 /Uexp ≤ Rtrue
0 ≤ Rexp

0 Uexp. For example, an uncertainty of 20% translates into
Uexp = 1.2. Secondly, the theoretical uncertainty factor Uth = U∗ of the stellar reactivity R∗

has to be estimated. The fundamental differences between error determinations in experiment
and theory are discussed in [2] and appropriate choices are suggested in [3]. Combining these
errors leads to a new uncertainty factor

U∗

new = Uexp + (U∗ − Uexp)(1−X0) (15)

for R∗

new. Here, Uexp ≤ U∗ is assumed because otherwise the measurement would not provide an
improvement. Obviously, also the uncertainty factor is temperature-dependent because at least
X0 depends on the plasma temperature. It is further possible to consider the uncertainty of X0

in U∗

new. Its impact, however, is small with respect to the other experimental and theoretical
uncertainties. It was shown in [12] that the magnitude of the error scales inversely proportionally
with the value of X0 (or generally Xi), i.e., X0 = 1 has zero error as long as G0 is known
(this is the case close to stability), and that the uncertainty factor UX ≥ 1 of X0 is given by
max(uX , 1/uX), where

uX = u (1−X0) +X0 (16)

and u is an averaged uncertainty factor in the predicted ratios of theRi. These ratios are believed
to be predicted with better accuracy than the rates themselves and so it can be assumed u ≤ Uth.
In any case, the uncertainties are sufficiently small to preserve the magnitude of X0, i.e., small
X0 remain small within errors and large X0 remain large, as can also be seen in figures 2, 3.

It is sometimes stated that the s-process is the nucleosynthesis process with the best
constrained nuclear input (see, e.g., [14, 25]). This statement, however, is based on the

3 Specifically, neutron captures for the s-process were incorrectly treated, including the ones in the well-known
compilations of [23,24] and all KaDoNiS versions up to and including v0.3 [13]. The revised table in [3] supersedes
the stellar rates in [13] and should be used instead.
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Figure 5. Uncertainty factors U∗

new for stellar (n,γ) rates at kT = 30 keV along stability, also
including the uncertainty in X0. All nuclides contained in [13] are shown.

uncertainties in the measured (n,γ) cross sections. The resulting uncertainties U∗

new in the
stellar reactivities and rates are much larger in many cases [3]. Figure 5 shows U∗

new for stellar
neutron capture rates at a typical s-process temperature for all data contained in [13], assuming
Uth = 2 (except for theoretical entries for which a larger uncertainty is given in the compilation).
Astrophysical s-process studies should consider that the rates can vary within the shown ranges
and not only within the experimental errors.

3. Equilibria

Experimental and theoretical investigations aiming at improved reaction rates for astrophysics
should keep in mind that sometimes it is not necessary to know the rates for calculating the
nucleosynthesis products. Forward and reverse reactions occur simultaneously in a plasma. If
the reactions in both directions are faster than the nucleosynthesis timescale (the duration of
the nuclear burning), then the number of nuclei of a given isotope will saturate to its equilibrium
number. This number can be calculated using the reciprocity relations for stellar reactivities
shown in section 2.3. Using equations (9), (10) it is trivial to show that

nAna

nBnb
=

(2JA
0 + 1)(2Ja + 1)

(2JB
0 + 1)(2Jb + 1)

GA
0

GB
0

(

mAa

mBb

)3/2

e−QAa/(kT ) (17)
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when a,b are particles, and

nAna

nB
=

(2JA
0 + 1)(2Ja + 1)

(2JB
0 + 1)

GA
0

GB
0

(

mAakT

2π~2

)3/2

e−QAa/(kT ) (18)

for a reaction A(a, γ)B. The individual rates do not appear anymore in the relation between
the number densities. Note that this does not imply that the abundances remain constant, they
still depend on T which may vary with time, as well as on na and nb.

Depending on the plasma density, above T ≈ 4 − 5 GK all reactions (with the exception of
the weak interaction) achieve equilibrium. It can be shown that the equilibrium number density
of a nucleus A can be calculated from a set of three equations [1, 26,27]

nA = GA
(Z +N)3/2

2Z+N

(

2π~2

mukT

)Z+N−1

eBA/(kT )nN
n nZ

p , (19)

ρ

mu
=

∑

A

nA(Z +N) , (20)

Ye

(

ρ

mu

)

=
∑

A

nAZ , (21)

where Z, N are the charge and neutron number, respectively, of nucleus A, GA = (2JA
0 + 1)GA

0
is its partition function, nn, np are the number densities of the free neutrons and protons,
respectively, and mu the nuclear mass unit. Nucleus A has a nuclear binding energy of BA. The
sums run over all species of nuclei in the plasma, including neutrons and protons. Equation (20)
expresses mass conservation and (21) is the charge conservation. The plasma density is denoted
by ρ, and Ye is the mean number of electrons per baryon. Note that reactions mediated by the
weak interaction are not included in the equilibrium and therefore Ye may be time-dependent.
Again, individual rates do not appear anymore in the above equations.

When all abundances in the network obey the above relations, full nuclear statistical

equilibrium (NSE) is achieved. In this case, no reaction rates have to be known. The relevant
nuclear physics input is the binding energies and the weak interaction rates determining Ye.
In realistic cases, more or less extended groups of nuclei are in statistical equilibrium and
the relative abundances within a group can be described by equations similar to (19). The
different groups are connected by comparatively slow reactions not being in equilibrium, which
determine the abundance level of one group with respect to another group. The rates of these
slow, connecting reactions have to be known explicitly. This is called quasi-statistical equilibrium

(QSE). It appears in various kinds of high-temperature burning, such as hydrostatic oxygen and
silicon burning in massive stars [28] and different explosive scenarios. Proton captures are in
equilibrium with (γ,p) reactions within isotonic chains in the νp- and rp-processes [22, 29, 30].
The slow reactions connecting different groups (chains) are β+-decays and electron captures
in the rp-process and (n,p) reactions in the νp-process. On the neutron-rich side of stability,
the (n,γ)-(γ,n) equilibrium of the r-process [31, 32] is a QSE within isotopic chains and slower
β−-decays connect the chains [33]. Of course, individual rates of all involved reactions have to
be known in order to determine under which conditions (temperature, density) the nuclei fall
out of NSE or QSE.

Another situation, in which not all individual rates have to be known, is a sequence of
reactions in which most of the reactions are much faster than one or a few slow ones. In
this case, the matter processing along this chain is determined by the slow reactions and their
reaction rates have the largest impact. When the process has lasted for a sufficient time to move
through all the nuclei in a chain and the relative number of nuclei in the chain does not change
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anymore, this is called steady flow [1]. Steady flow considerations are helpful when investigating
hydrostatic hydrogen burning of stars through the pp-chains and the CNO cycles [9,10]. In the
past they have also been used for sequences of neutron captures in the s-process on nuclei in
between magic numbers [9].

4. Sensitivities

The study of the sensitivities of reaction cross sections and astrophysical reactivities to variations
in nuclear properties has proven essential in several respects. Firstly, it is not always possible
to cover the astrophysically relevant energy range in experimental investigations, especially for
charged particle reactions on intermediate and heavy nuclei which show tiny reaction cross
sections at low energy due to the high Coulomb barriers. Astrophysical reactivities as well as
low-energy cross sections may have quite different sensitivities than cross section at higher energy.
Therefore great care has to be taken in comparisons of theory to experiment and in subsequently
drawing conclusions on the ability of theory to predict astrophysical reaction rates. Deviations
from predictions found in experimental data above the astrophysical energies often turn out
to be irrelevant for the rate predictions because they are caused by an insufficient theoretical
description of a nuclear property which has no impact at low energy. On the other hand, they
may also not be sufficient to constrain the actually relevant properties and thus add nothing
to better constraining the reaction rate. In order to draw valid conclusions for astrophysics,
experimental and theoretical studies of reaction cross sections have to consider the applicable
sensitivities.

As laid out in [2], the knowledge of sensitivities also allows to study uncertainties in the
prediction of reaction rates. While the definition of an “error bar” for theory is complicated by
some fundamental differences to attaching an experimental error (see [2] for details), properly
defined sensitivities immediately allow to see the impact of various uncertainties in nuclear
properties and input without having to perform the full variational calculations. This also
implies that it is easy to see which properties are in need of a better description in order to
better constrain the astrophysical rate.

In order to quantify the impact of a variation of a model quantity q (directly taken from
input or derived from it) on the final result Ω (which is either a cross section or a reactivity),
the relative sensitivity s (Ω, q) is defined as [1, 2]

s (Ω, q) =
vΩ − 1

vq − 1
. (22)

It is a measure of a change by a factor of vΩ = Ωnew/Ωold in Ω as the result of a change in the
quantity q by the factor vq = qnew/qold, with s = 0 when no change occurs and s = 1 when the
final result changes by the same factor as used in the variation of q, i.e., s (Ω, q) = 1 implies
vΩ = vq. Further information is encoded in the sign of the sensitivity s. Since both vΩ > 0
and vq > 0 for the quantities studied in this context, a positive sign implies that Ω changes
in the same manner as q, i.e., Ω becomes larger when the value of the quantity q is increased.
The opposite is true for s < 0, i.e., Ω decreases with an increase of q. The above definitions
are consistent with the ones used in standard sensitivity analysis when realizing that (22) is
equivalent to

s (Ω, q) =

dΩ
Ωold

dq
qold

, (23)

with dΩ = Ωnew − Ωold and dq = qnew − qold.
The varied quantities q in reaction rate studies are neutron-, proton-, α-, and γ-widths.

Sometimes also the nuclear level density is varied although it can be shown that it mainly
affects the γ-width in astrophysical applications. Comparing the sensitivities of a cross section
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Figure 6. Sensitivities s of the laboratory cross section of 96Ru(p,γ)97Rh to variations of
nucleon-, α-, and γ-widths, plotted as functions of c.m. energy [2]. The shaded region is the
astrophysically relevant energy range for 2 ≤ T ≤ 3 GK [7].

to variations of the γ-widths and level density allows to further constrain an observed deviation
of a prediction from data, provided the cross section is mainly sensitive to the γ-width at the
measured energy. As mentioned before, also the impact of uncertainties in the (input) quantities
on the final rate or cross section can be studied using the relative sensitivities. When a quantity
q has an uncertainty factor Uq, it will appear as an uncertainty factor ΩU = |s (Ω, q)|Uq in the
final result.

It should be noted that laboratory cross sections σ0 exhibit different sensitivities in forward
and reverse reactions, whereas it follows from the reciprocity relations (9), (10) that the
sensitivities of the reaction rates are the same for forward and reverse reaction. It is also
to be mentioned that even in the astrophysical energy range laboratory cross sections do not
necessarily show the same sensitivity as the stellar rate. This depends on X0 and/or the
sensitivities of the transitions from excited states. Usually the cross section in the reaction
direction with larger X0 will behave more similar to the stellar rate.

Extended tables of sensitivities for reactions on target nuclei between the driplines and with
10 ≤ Z ≤ 83 have been published in [2], for rates as well as cross sections. Here, only a
few examples are discussed. Figure 6 shows a striking example of how different sensitivities
can be in the astrophysical energy range and above it. If a measurement of 96Ru(p,γ)97Rh
showed discrepancies to predictions above, say, 5− 6 MeV it would be hard to disentangle the
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uncertainties from different sources. Moreover, such a discrepancy would say nothing about
the quality of the prediction at astrophysical energies, as the cross section is almost exclusively
sensitive to the proton width there, whereas the proton width does not play a role at higher
energy. Obviously, if good agreement is found, on the other hand, between experiment and
theory at higher energy, this does not constrain the uncertainty of the reaction rate.

As a general observation it was found that the γ-width is not relevant in astrophysical charged
particle captures on intermediate and heavy mass nuclei [2]. This is due to the fact that the
Coulomb barrier suppresses the proton- and α-widths at low energy and makes them smaller
than the γ-widths at astrophysical interaction energies. The cross sections and rates will always
be most sensitive to the channel with the smallest width. It also follows from this that whenever
an α-particle is involved, the reaction will be mostly sensitive to its channel. The situation
for neutron captures is more diverse. For neutron-rich nuclei the rates are strongly sensitive to
the γ-width. In between magic neutron numbers along stability and especially in the region of
deformed nuclei, however, they are also or even more sensitive to the neutron-width (see figures
14, 15 in [2]). This can be explained by the fact that the compound nuclei in these regions
have higher level densities and this leads to comparable sizes of the neutron- and γ-widths at
astrophysical energies.

Further examples regarding the application of sensitivity plots to the astrophysical
interpretation of experimental data are found in [1, 34–41] and references therein.

5. Conclusion

While reactions involving light target nuclei are dominated by few, easily identifyable transitions,
the dependence of astrophysical reaction rates and cross sections is more complicated for
intermediate and heavy mass nuclei. An overview of the important effects was given above.
Suggestions on how to implement the above results to improve our knowledge of astrophysical
reaction rates have been given in [1–3].

Crucial for all experimental and theoretical investigations is the choice of nuclei, reactions,
and nuclear properties of astrophysical relevance to study. This involves several considerations.
Firstly, not all nuclei and reactions appearing in a nucleosynthesis process are equally important.
Some may be rendered insignificant by full or partial equilibria (section 3). Furthermore, the g.s.
contributions X0 to the stellar rate should also be considered when devising an experiment to
judge whether a feasible measurement can actually constrain the stellar reaction rate, even
when performed within the astrophysical energy range. A reaction should preferrably be
measured in the direction of largest X0. The applicable energy ranges can be found in [7].
If a measurement within this energy range is possible, the theoretical rate has to be corrected
by the experimental data as explained in section 2.5. This also assigns an improved uncertainty.
A simple renormalization is not adequate, not even when X0 = 1 at one temperature because
of the temperature-dependence of Xi. If a measurement is unfeasible at astrophysical energies,
the sensitivities introduced in section 4 have to be consulted to assess whether cross sections
in the accessible energy range can help to constrain the rate. Knowing the sensitivities, also
alternative reactions or approaches may be sought to extract the actually important quantities
required as input for the rate predictions.

All in all, the procedures laid out here allow to focus experiment and theory on the study of
the actually relevant nuclear reactions and properties. They provide a well-directed approach
to a purposeful improvement of astrophysical reaction rates, necessary for the best and most
economical use of existing and future experimental and computing facilities.
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[25] Wiescher M, Käppeler F and Langanke K 2012 Ann. Rev. Astron. Astrophys. 50 165
[26] Arnett D 1996 Supernovae and Nucleosynthesis (Princeton: Princeton University Press)
[27] Padmanabhan T 2000 Theoretical Astrophysics: Vol. 1, Astrophysical Processes (Cambridge: Cambridge

University Press)
[28] Hix W R and Thielemann F-K 1999 Ap. J. 511 862
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[36] Kiss G G, Gyürky Gy, Elekes Z, Fülöp Zs, Somorjai E, Rauscher T and Wiescher M 2007 Phys. Rev. C 76

055807
[37] Gyürky Gy et al 2010 J. Phys. G 37 115201
[38] Sauerwein A et al 2011 Phys. Rev. C 84 045808
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