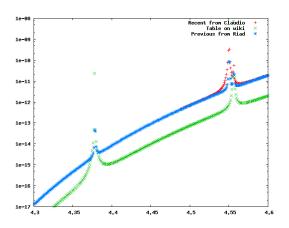
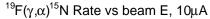
$^{19} \overline{\mathsf{F}(\gamma, \alpha)^{15} \mathsf{N}}$ Rates

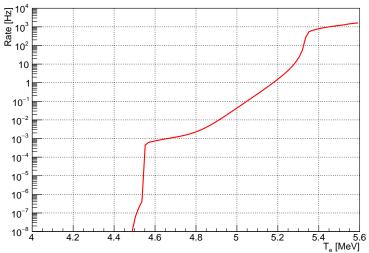
Seamus Riordan seamus@anl.gov



January 25, 2018

Overview


- Got updated $^{19}{\rm F}(\gamma,\alpha)^{15}{\rm N}$ rates
 - Cross section on wiki was low
- Have recalculated estimates for C₃F₈


Cross Section

• Cross section on wiki is significantly lower

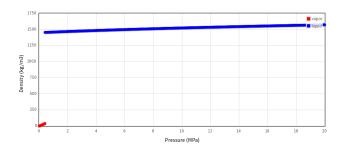
3 / 9

Unfolding

- Assumptions made using simplest unfolding algorithm
- Electron energies evenly spaced by Δ
- Using bin centers as photon number calculation points

$$Y_i \approx \sum_j N_{\gamma}(T_i^e, E_j^{\gamma})\sigma(E_j^{\gamma})$$

$$= \sum_j N_{ij}\sigma_j$$


with
$$E_i^{\gamma} = T_i^e - (i - j + \frac{1}{2})\Delta$$

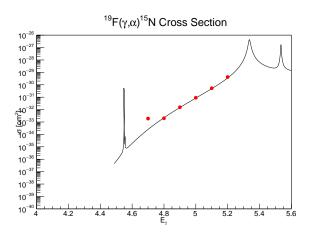
• Measured cross section $\bar{\sigma}_j$ for E_i^{γ}

$$\bar{\sigma}_j = B_{ji} Y_i = N_{ji}^{-1} Y_i$$

Input Parameters

C₃F₈ density from NIST

- 0.06% T_e resolution
- 3 cm long bubble chamber target
- 0.6 cm copper radiator (compared brem spectrum to G4, see prior talks)


6 / 9

Trial Run Plan

- Solved for constant $d\sigma/\sigma$, but assuming little cross section variation
- Assumed total run time about 1 week
- Rates all less than 400 counts/hour

						Recon.
T	E_{γ}	$I\left(\muA\right)$	t (h)	Yield	Back	$d\sigma/\sigma$ (%)
4.75	4.70	50.0	83	2319	333	2.2
4.85	4.80	36.8	61	3235	245	5.4
4.95	4.90	9.1	15	913	60	5.0
5.05	5.00	3.2	5	616	21	5.7
5.15	5.10	1.3	2	627	9	5.5
5.25	5.20	0.2	2	596	3	5.2
			169			

 Lowest point picks up resonances, but gets subtracted off for higher points

- Lowest point picks up resonance, but gets subtracted off for higher points
- Shifting T_e by 0.5 MeV goes to \sim 10% uncertainties

8 / 9

To Do and Concerns

- Need to include G4 rates from Whit
- Point-to-point systematics in unfolding?
 - Leading point unfolding

$$\sigma(4.8~{
m MeV}) \propto rac{Y(4.8~{
m MeV})}{\int L(4.8~{
m MeV})dt} - 1.5 rac{Y(4.7~{
m MeV})}{\int L(4.7~{
m MeV})dt}$$

• Absolute and step-relative uncertainties should be redone?