Chicane optimization

Sami Habet

IJCLab.
Jefferson Laboratory.

March 2022

Jefferson Lab

Plan

(1) Analytics optimization
(2) ELEGANT's Simulations
(3) Conclusion \& Questions

Jefferson Lab

Plan

(1) Analytics optimization

(2) ELEGANT's Simulations

(3) Conclusion \& Questions

Rectengular dipole matrix

- The rectengular dipole matrix is defined as:

$$
M_{\text {dipole }}(\rho \theta)=\left[\begin{array}{cccc}
\cos \theta & \rho \sin \theta & 0 & \rho(1-\cos \theta) \\
-\frac{1}{\rho} & \cos \theta & 0 & \sin \theta \\
-\sin \theta & -\rho(1-\cos \theta) & 1 & \left(\frac{\rho \theta}{\gamma^{2}}\right)-\rho(\theta-\sin \theta) \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- $L_{\text {dipole }}=\rho \theta$
- ρ is the bend radius.
- θ is the bend angle.
- $\left[y, y^{\prime}\right]$ and $\left[\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{z}, \delta\right]$ elements are decoupled.

Sector dipole matrix

- The sector dipole matrix is defined as :

$$
M_{\text {dipole }}(\rho \theta)=\left[\begin{array}{cccc}
\cos \theta & \rho \sin \theta & 0 & 0 \\
-\frac{1}{\rho} & \cos \theta & 0 & 0 \\
? & ? & 1 & \left(\frac{\rho \theta}{\gamma^{2}}\right)-\rho(\theta-\sin \theta) \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- $L_{\text {dipole }}=\rho \theta$
- ρ is the bend radius.
- θ is the bend angle.
- $\left[y, y^{\prime}\right]$ and $\left[\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{z}, \delta\right]$ elements are decoupled.

Achromaticity condition

To simplify the mathematics we apply:
Achromaticity criterion : $\mathrm{D}=\left[\begin{array}{c}\eta_{x} \text { exit } \\ \eta_{x}^{\prime} \text { exit }\end{array}\right]=\left[\begin{array}{c}\eta_{x \text { entrance }} \\ \eta_{\text {entrance }}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
D_{\text {exit }}=\left[\begin{array}{ll}
M_{x} & 0
\end{array}\right] \times D_{\text {entrance }}+\left[\begin{array}{l}
R_{16} \\
R_{26}
\end{array}\right]
$$

$$
R_{16}=R_{26}=0
$$

Achromaticity condition

$$
M_{\text {chicane }}=\left[\begin{array}{cccccc}
1 & R_{12} & R_{13} & R_{14} & R_{15} & 0 \\
R_{21} & 1 & R_{23} & R_{24} & R_{25} & 0 \\
R_{31} & R_{32} & 1 & R_{24} & R_{25} & 0 \\
R_{41} & R_{42} & R_{43} & 1 & R_{25} & 0 \\
0 & 0 & 0 & 0 & 1 & R_{56} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
z_{\text {exitchicane }}=R_{55} z_{0}+R_{56} \delta_{0}
$$

$$
\Delta z=R_{56} \delta_{0}
$$

Longitudinal beam chirp

- Using z \& $\frac{\Delta P}{P}$ space, we have:

$$
\kappa=\frac{d \delta_{p}}{d z}=\frac{-k e V_{0}}{E 0+e V 0 \cos \phi} \sin \phi
$$

- $k=2 \pi \frac{f}{c}\left[\mathrm{~m}^{-1}\right]$
- f is the cavity frequency
- eV Cavity acceleration [MeV]
- E_{0} Central energy [MeV]
- ϕ Cavity phase advance.
- Compression factor

$$
\begin{aligned}
C & =\frac{1}{1+\left[R_{56} \times \kappa\right]} \\
C & =\frac{1}{1+\left[R_{56} \times \frac{-k V V_{0}}{E 0+e V 0 \cos \phi} \sin \phi\right]}
\end{aligned}
$$

Compression factor

- $R_{56}=-0.25 \mathrm{~m}$

Optimal chirp $\quad 3.81 m^{-1}$ Optimal $\phi=-96.4^{\circ}$

Beam size along the chicane

- How to reduce the beam size along the chicane?
- Answer : FODO
- Motivation: $\frac{\Delta P}{P_{0}}= \pm 10 \%$
- Focusing quadrupole $=$

$$
\left[\begin{array}{cc}
\cos \sqrt{K} L_{q} & \frac{1}{\sqrt{K}} \sin \sqrt{K} L_{q} \\
-\sqrt{K} \sin \sqrt{K} L_{q} & \cos \sqrt{K} L_{q}
\end{array}\right]
$$

- Defocusing quadrupole $=\left[\begin{array}{cc}\cosh \sqrt{K} L_{q} & \frac{1}{\sqrt{K}} \sinh \sqrt{K} L_{q} \\ -\sqrt{K} \sinh \sqrt{K} L_{q} & \cosh \sqrt{K} L_{q}\end{array}\right]$
- FODO
$M_{\text {FODO }}=$
$M_{\text {HALF }}$ QF $M_{\text {DRIFT }} M_{\text {QD }} M_{\text {DRIFt }} M_{\text {HALF }}$ QF

Linear beam optics

- Initial FODO parameters
- Focusing Quadrupole strength $K_{Q F}=0.6 \mathrm{~m}^{-2}$
- Quadrupole length $L_{Q}=0.2 \mathrm{~m}$
- Defocusing quadrupole strength $K_{Q D F}=$?
- Drift parameter:
- Drift length $L_{\text {drift }}=5.6 \mathrm{~m}$
- Motivation Apply the periodicity condition on the FODO lattice to
get : $\left[\begin{array}{l}\beta_{\text {exit }} \\ \alpha_{\text {exit }} \\ \gamma_{\text {exit }}\end{array}\right]=\left[\begin{array}{l}\beta_{\text {entrance }} \\ \alpha_{\text {entrance }} \\ \gamma_{\text {entrance }}\end{array}\right]$
- $\beta \alpha$ and γ are the twiss parameters of the beam wich describes the behaviour of the optics along the lattice.
- In periodic system, for stability of the equation of the motion we have :

$$
|\operatorname{trace}(M)|<2
$$

Linear beam optics

- If the FODO matrix is given by :

$$
M\left(s_{1} s_{2}\right)=\left[\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right]
$$

- The transformation matrix from point s_{1} to s_{2} in the lattice is given by :

$$
\left[\begin{array}{l}
\beta_{s 2} \\
\alpha_{s 2} \\
\gamma_{s 2}
\end{array}\right]=\left[\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right]\left[\begin{array}{l}
\beta_{s 1} \\
\alpha_{s 1} \\
\gamma_{s 1}
\end{array}\right]
$$

- From the stability condition:

$$
\mid \text { trace } M\left(s_{1} s_{2}\right) \mid=C+S^{\prime}<2
$$

We get :

$$
K_{Q D F}=-1.096 m^{-2}
$$

Linear beam optics

- The FODO matrix become :

$$
M_{F O D O}=\left[\begin{array}{cc}
0.95 & 6.59 \\
-0.014 & 0.95
\end{array}\right]
$$

- With $\alpha=0$ then we have $\beta=\beta_{0}$ and $\gamma=\frac{1}{\beta_{0}}$, then Using the transformation matrix:

$$
\beta_{0}=11.6 \mathrm{~m}
$$

- We define the phase advance matrix per cell:

$$
\left[\begin{array}{cc}
\cos \phi+\alpha \sin \phi & \beta \sin \phi \\
-\gamma \sin \phi & \cos \phi-\alpha \sin \phi
\end{array}\right]
$$

- We can immediately get the phase advance :

$$
\begin{align*}
\cos \phi & =0.95 \tag{1}\\
\phi & =\arccos 0.95
\end{align*}
$$

Plan

(1) Analytics optimization

(2) ELEGANT's Simulations

(3) Conclusion \& Questions

Jefferson Lab

ELEGANT Results

- Layout :

Dispersion

- Dispersion peak at the middle of the chicane.

Jefferson Lab

Beam size $\left[x, x^{\prime}\right]$ plane

- The beam size at the middle of the chicane is given by:

$$
\sigma=\sqrt{\epsilon \times \beta_{\min }}
$$

- From the positron distribution $\epsilon=0.039 \mathrm{~mm}$ rad, and from the β function, we get $\beta_{\text {min }}$ at the middle of the chicane:

$$
\beta_{\min }=3.7 \mathrm{~m}
$$

- The beam size at the middle of the chicane is:

$$
\sigma=0.012 \mathrm{~m}
$$

Chicane exit

Plan

(1) Analytics optimization

(2) ELEGANT's Simulations

(3) Conclusion \& Questions

Jefferson Lab

Conclusion

- Fodo lattice allow us to control the beam size along the chicane.
- Optimized cavity to chirp the beam.
- Need to increase the dispersion at the middle of the chicane.
- Need an optimized matching section (quadrupoles) before the FODO lattice to match the twiss parameters.
- Mathematic calculations helps a lot for the software optimization.
- To be continued ...

