Bubble Chamber – Beam Requirements

January 5, 2018

Bubble Chamber Experiment

- I. Plan to be installed on March 26, 2018
- II. April run plan:
 - 2 weeks of beam (2 shifts per day)
 - Active liquid is C₃F₈
 - Beam energy: 4.5 5.5 MeV
 - Beam current: $1 \text{ nA} 100 \mu \text{A}$
 - Prefer to run with RF at 2K but willing to try 4K
- III. Keep chamber installed at 5D line
- IV. Plan to run again in August: 2 weeks of beam

Schematics

- > Power deposited in radiator (100 μ A and 8.5 MeV) :
 - I. 6 mm: Energy loss = 8.5 MeV, P = 850 W
- Pure Copper and Aluminum (high neutron threshold):
 - I. $^{63}C(\gamma,n)$ threshold = 10.86 MeV
 - II. ${}^{27}AI(\gamma,n)$ threshold = 13.06 MeV

Beam Requirements

Beam Energy Measurement

Parameter	Term	Before	Goal
Dipole – field map	δΒ/Β	0.20%	0.02%
Dipole – power supply	δΙ/Ι	0.20%	0.02%
Position – surveys	δθ/θ	0.01%	0.01%
Position – BPM calibration	δθ/θ	0.05%	0.05%
Stray magnetic field	δθ/θ	0.05%	0.05%
Total	δΡ/Ρ	0.30%	<0.10%

- I. For Bubble Chamber experiment:
 - 1. Installed new higher field dipole with better uniformity
 - 2. Installed new Hall probe: 0.01% accuracy, resolution to 2 ppm, and a temperature stability of 10 ppm/°C
 - 3. Better shielding of Earth's and other stray magnetic fields
 - 4. Implemented 5 MeV dipole precision DCCT current readback
- II. Relative beam energy uncertainty <0.02% is required

Beam Position Measurement

- I. Keep beam centered on collimator
- II. Measure beam position on radiator use x-ray fluorescent screen
- III. Survey 5D line (radiator and collimator)

- x-ray fluorescent screen was installed in front of radiator on Nov 2, 2015
- This screen has a special coating that illuminates under x-rays and emits a green light

$0.5 \ \mu A \ centered \ on \ x-ray \ screen$

Need to develop procedure to center beam on radiator using 5D line BPMs and viewers for different beam energies while accounting for earth's magnetic field

Beam Current Measurement

- I. Approved to run 10 μA CW and total energy of 10 MeV needs approval to run at 100 μA
- II. Calibrate BCM and measure nA beam currents
- III. Re-isolate radiator to measure beam current
- IV. Stop beam when chamber is unstable while quenching a bubble