Generation and Characterization of Magnetized Bunched Electron Beam from DC High Voltage Photogun for JLEIC Cooler

R. Suleiman and M. Poelker

Motivation

Jefferson Lab Electron Ion Collider (JLEIC) bunched magnetized electron cooler is part of Collider Ring and aims to counteract emittance degradation induced by intra-beam scattering, to maintain ion beam emittance during collisions and extend luminosity lifetime

Magnetized Cooling

Ion beam cooling in presence of magnetic field is much more efficient than cooling in a drift (no magnetic field):

- Electron beam helical motion in strong magnetic field increases electron-ion interaction time, thereby significantly improving cooling efficiency
- Electron-ion collisions that occur over many cyclotron oscillations and at distances larger than cyclotron radius are insensitive to electrons transverse velocity
- Cooling rates are determined by electron longitudinal energy spread rather than electron beam transverse emittance as transverse motion of electrons is quenched by magnetic field
- Magnetic field suppresses electron-ion recombination

- Using spare CEBAF Dogleg magnet power supply (500 A, 80 V)
- Learned that gun solenoid can influence field emission
- First trials with gun at high voltage and solenoid **ON** resulted in new field emission and vacuum activity
- Procedure to energize solenoid without exciting new field emitters

Office of Science

Acknowledgement: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177

September 19, 2017

- B_z : solenoid field at photocathode

Summary & Plans

- K₂CsSb Photocathode Preparation Chamber, Gun HV Chamber, Gun Solenoid and Beamline are all operational Photogun operates reliably at 300 kV Cathode solenoid can trigger field
- emission but we have learned how to
- Have successfully magnetized electron beam and measured rotation angle Delivered 1.5 mA DC magnetized beam
- Preparing to install a mode-locked drive laser, to generate mA magnetized beam
- Build and install TE_{011} cavity to measure
- Switch to 32 mA 225 kV HV power supply

Thanks to: P. Adderley, J. Benesch, B. Bullard, J. Grames, J. Guo, F. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G. Krafft, M. A. Mamun, Y. Wang, S. Wijiethunga, J. Yoskovitz, S. Zhang