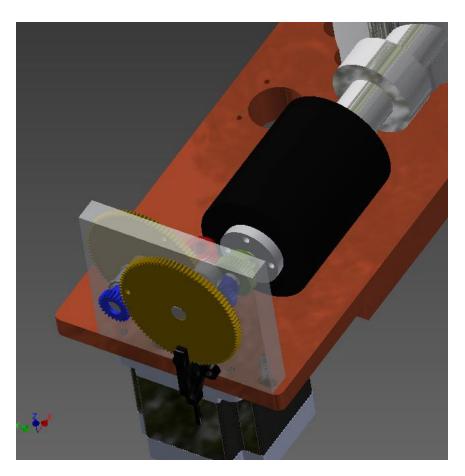
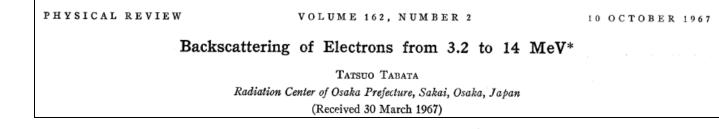
Mott Progress Report on Schedule, Target Ladder and Beam Dump Plate

Joe Grames August 14

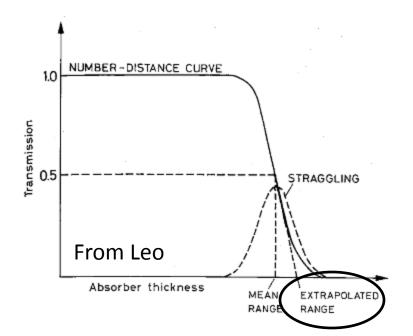

Schedule

- Present work schedule
 - Sept 28 HCO begins
 - Nov 1 Mott tunnel work complete
 - Nov 4 2K recovery begins
 - Nov 8 Mott commissioning plan ready
 - Nov 9 HCO ends
 - Nov 9 Injector setup begins
 - Nov 11 2K recovery ends
 - Nov 11 Pulsed beam to FC1
 - Nov 16 Pulsed beam to FC2
 - Nov 16 Mott ready for beam
 - Nov 21 Pulsed beam to INJ spectrometer
 - Nov 24 Pulsed beam to OR dump (end of injector)
 - Nov 28 Run through Thanksgiving
 - Dec 18 1-pass pulsed beam at 2.2 GeV
 - Dec 20 Winter shutdown
 - Feb 5 ACC-II begins
 - May 7 ACC-II ends

Target Ladder


Budget approved for new target ladder parts and assembly.

- Gears and fixture plate for precision position control designed and ordered
- STAC-5 stepper motor controller software written and testing = good
- Target ladder (0.16") should be ordered today
- Viewer machining and adapter plate requirements known, yet incomplete



MM Health: or NO_ALARM		Mott Ladder		Related		
Foil Select						
Current steps:		110000 steps				
tome I	Home:	Mount Type n/a	Foil Desc Fully retracted	Saved Pos 0 steps		
Req	Foil 1:	Circular	Cu: 12 um	10000 steps		
Req	Foil 2:	Rectangular	Cu: 4.1 um	20000 steps		
Req	Foil 3:	Rectangular	Au: 0.05 um	30000 steps		
Req	Foil 4:	* Damaged *	Ag: 4.5 um	40000 steps		
Req	Foil 5:	Circular	Ag: 1.6 um	50000 steps		
Req	Foil 6:	Circular	Ag: 0.45 um	60000 steps		
Req	Foil 7:	- Empty -		70000 steps		
Req	Foil 8:	Circular	Au: 0.1 um	80000 steps		
Req	Foil 9:	Circular	Au: 0.35 um	90000 steps		
Req F	oil 10:	Circular	Au: 1.0 um	100000 steps		
Req F	oil 11:	Circular	Au: 5.0 um	110000 steps		
Req F	oil 12:	Circular	Cu: 1.0 um	120000 steps		
Req F	oil 13:	Circular	Cu: 8.0 um	130000 steps		
Req F	oil 14:	Circular	Cu: 18 um	140000 steps		
Req F	oil 15:	Circular	Ag: 10 um	150000 steps		
Req F	oil 16:	Circular	Ag: 15 um	160000 steps		
tatus:	atus: Ready					
		ABORT				

Dump Plate : motivation to reduce backscatter

"...angular distribution of backscattered electrons and the backscattering coefficient were measured for Cu, Ag, and Au targets of various thicknesses at the incident energy of 6.08 MeV, and for Be, C, Al, Cu, Ag, Au, and U targets of effectively semi-infinite thickness in the energy range 3.24-14.1 MeV."

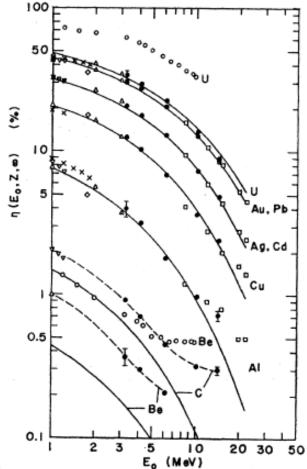
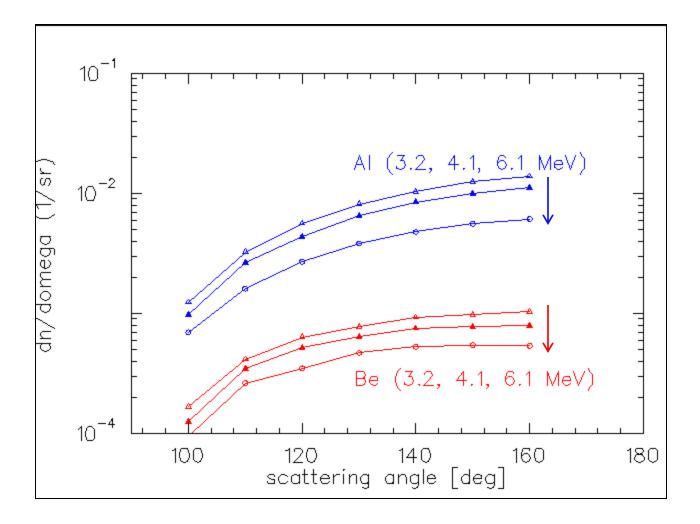
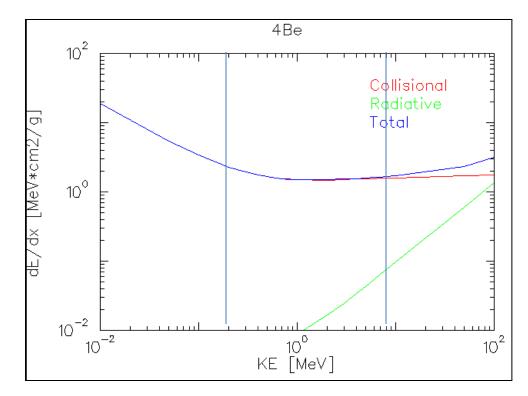



FIG. 8. Dependence of total backscattering coefficient $\eta(E_0, Z, \infty)$ for semi-infinite targets upon incident energy E_0 .


Dump Plate : motivation to reduce backscatter

From same paper, angular distributions for semi-infinite thickness targets.

Dump Plate : energy loss

200keV – 8MeV energy loss is nearly all collisional at 1.6 MeV-cm²/g

KE	Uniform Loss (1.6 MeV-cm2/g)	Katz and Penfold Rev. Mod Phys 24 (1952) 28	Practical Range (ρ _{Be} = 1.848 g/cm3)	Turn-Around Range
3 MeV	1.88 g/cm2	1.48 g/cm2	0.8cm	0.40cm
5 MeV	3.12 g/cm2	2.54 g/cm2	1.4cm	0.70cm
8 MeV	5.00 g/cm2	4.14 g/cm2	2.3cm	1.15cm
10 MeV	6.25 g/cm2	5.14 g/cm2	2.8cm	1.4cm

Dump Plate : worst case thermal distribution

Be Cy P 1.848 g/cm² 8.920 g/cm² Twelf 1287°C 2927°C dE 1.6 MeV-rufy "

I asked Dave Meekins if he would givs us a first pass look at thermal distribution given uniform energy loss in volume (beam radius * E/(dE/dx).