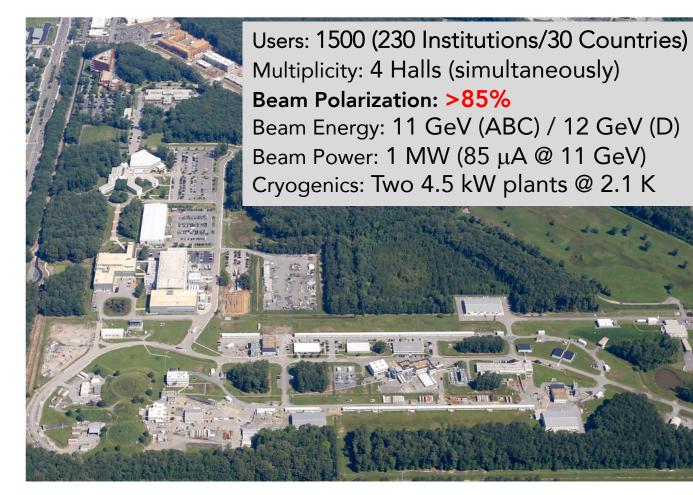
A High Precision 5 MeV Mott Polarimeter

Jefferson Lab Mott Team

<u>J. M. Grames</u>¹, C. K. Sinclair¹, M. Poelker¹, X. Roca-Maza², M. L. Stutzman¹, R. Suleiman¹, Md. A. Mamun¹, M. McHugh³, D. Moser¹, J. Hansknecht¹, B. Moffit¹, and T. J. Gay⁴

> ¹Thomas Jefferson National Accelerator Facility ²Departimento di Fisica, Universita degli Studi di Milano, and Istituto Nazionale di Fisica Nucleare ³Physics Department, George Washington University ⁴Jorgensen Hall, University of Nebraska

SPIN2021, 17-22 October 2021, Matsue, Japan



CEBAF @ Jefferson Lab

Many of the highest impact experiments performed at Jefferson Lab have relied on spin-polarized electron beams.

HAPPEX – Nucleon strangeness

K.A. Aniol, et al., Phys. Rev. C 69, 065501 (2004)K.A. Aniol, et al., Phys. Lett. B 635, 275 (2006)K.A. Aniol, et al., Phys. Rev. Lett. 96, 022003 (2006)

G⁰ – Nucleon strange quark distribution

D. S. Armstrong, et al., Phys. Rev. Lett. 95, 092001-1-5 (2005)

Qweak – Test of the Standard Model D. Androic, et al., Phys. Rev. Lett. **111**, 141803 (2013)

G_E/G_M – Proton electric/magnetic factor A. J. R. Puckett, et al., Phys. Rev. C **96** (2017) 055203

PREx – Lead Radius Experiment C. Horowitz, et al., Phys. Rev. C 63, 025501 (2001) See D. Jones' talk at this conference

CREx – Calcium weak Radius Experiment See Y. Tian's talk at this conference

High energy electron polarimeters at CEBAF

Unsurprisingly **electron polarimetry is a very important technology** at Jefferson Lab, and there are many polarimeters.

	Beam energy			(dP/P)	$)_{\rm syst}$
Polarimeter	(GeV)	Arms	Optics	Target	Full
$SLAC^{60}$	48	1	D	1.7%	2.7%
$SLAC^{61}$	16, 29	2	D	2.3%	2.4%
MAM157	0.850	2	Q	2.0%	9.0%
MAM[16],68	0.850 - 1.50	2	D	0.6%	1.6%
$Bates^{58}$	0.250, 0.574	1	Q	1.25%	6.0%
$Bates^{59}$	0.868	2	Q	1.5%	2.9%
ELSA ⁶⁹	1.0 - 3.3	2	D	1.9%	2.0%
$JLab, A^{70}$	0.85-6	2	QQD	1.5%	1.7%
JLab, $A^{\overline{70}}$	0.85-6	2	QQD	0.35%	0.9%
JLab, $B^{\overline{71}}$	0.85-6	2	QQ	1.4%	3.0%
JLab, $C^{\overline{65}}$ (ideal)	0.85 - 6	2	QQ	0.3%	0.5%
JLab, $C^{\underline{72}}$ (Q-Weak)	1.16	2	QQ	0.3%	0.8%

Table 6. Møller polarimeters.

MOLLER (0.8 – 3.0 %)

					uncertainties	of	high	precision	Compton
polarimete	$ers (SLD, \frac{8610}{2})$	⁶ JLab Hall A	103	and JLab H	$[all C^{\underline{82}}].$				

	SLD	Hall A (photon)	Hall C (electron)
Properties			
Beam energy	$45.6{ m GeV}$	$3{ m GeV}$	$1.16{ m GeV}$
Endpoint A_{long}	74.7%	5.21%	4.06%
Laser system	$532\mathrm{nm},\mathrm{pulsed}$	$1064\mathrm{nm},\mathrm{FP}$ cavity	$532 \mathrm{nm}, \mathrm{FP} \mathrm{cavity}$
Detector	Cherenkov	GSO	Diamond strip
Scheme	Multiphoton	Integrating	Differential
Uncertainties		dP/P (%)	
Laser polarization	0.10	0.80	0.18
Detector response (linearity, gain)	0.20	0.48	0.1
Analyzing power determination	0.40	0.13	0.27
DAQ and electronics related	0.20	N/A	0.48
Total	0.50	0.94	0.59

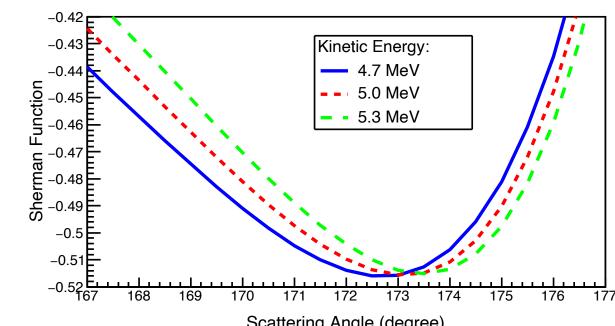
COMPTON (0.59 – 0.94 %)

K. Aulenbacher, E. Chudakov, D. Gaskell, J. Grames, and K.D. Paschke,

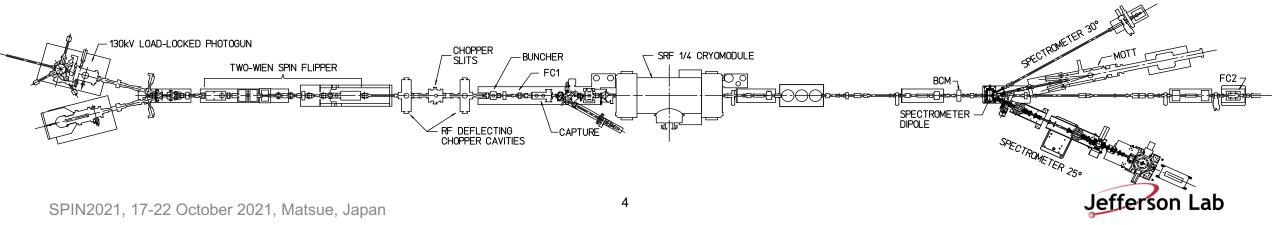
"Precision electron beam polarimetry for next generation nuclear physics experiments", International Journal of Modern Physics E, **27**, 7 (2018)

Injector MeV energy Mott scattering polarimeter

Mott polarimetry exploits elastic scattering asymmetry of spin polarized electrons from nuclear Coulomb field.


 $\sigma(\theta) = I(\theta) \left[1 + S(\theta) \mathbf{P} \cdot \mathbf{n} \right]$

Benefits of MeV energy Mott


- Larger analyzing power
- Smaller cross-section
- Free standing targets
- Systematics suppressed (more on this later)

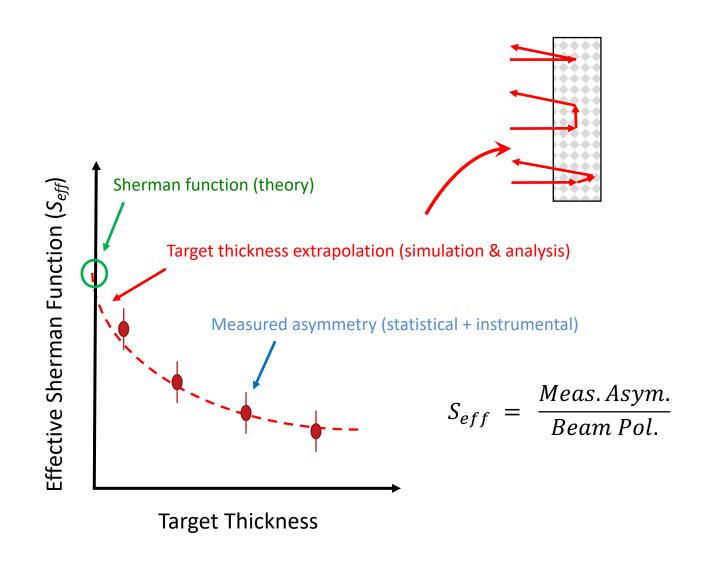
Historical JLab performance

- Measuring spin-polarization of photocathodes
- Calibrating injector spin rotators
- Study from 2000 reported 1.1% accuracy (conservatively 1-2%)

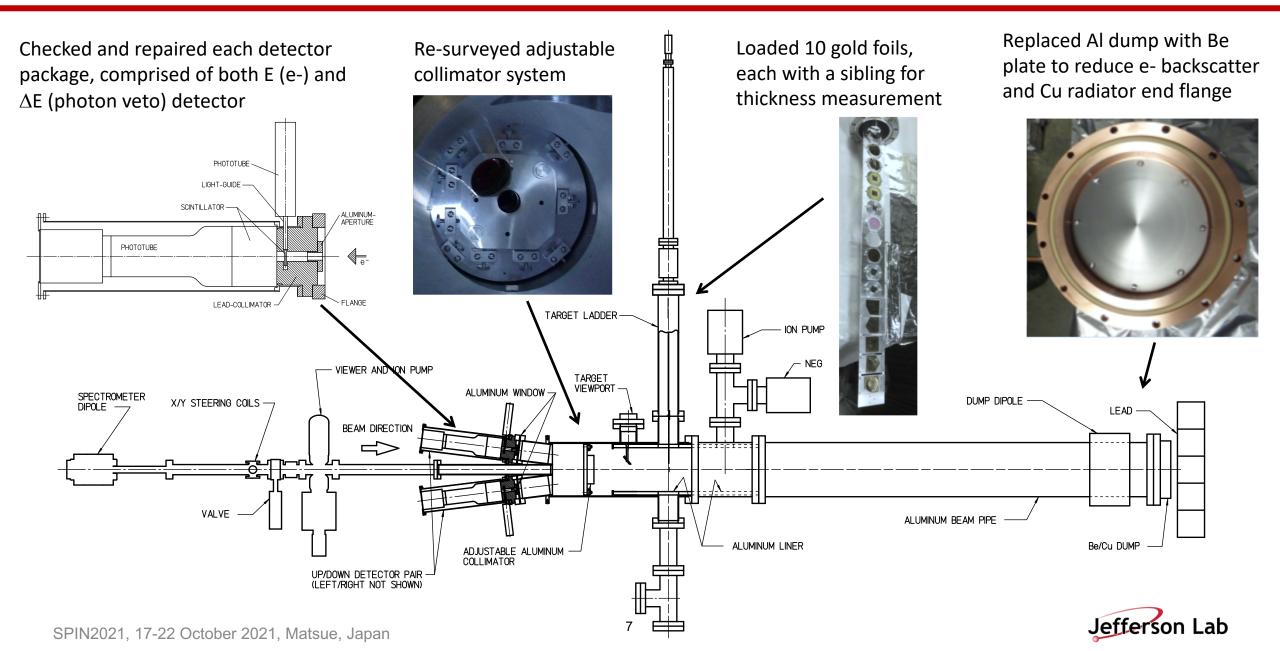
Scattering Angle (degree)

The **dominant uncertainty** in the measured **parity-violating asymmetry** in the scattering of longitudinally polarized electrons from nuclear or electron targets is on the **beam polarization**.

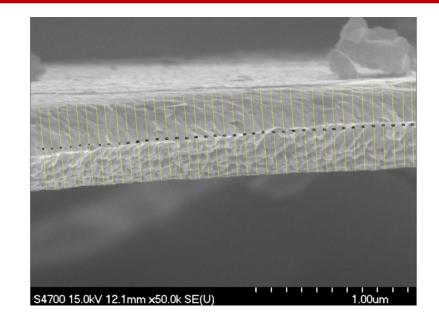
Next generation of parity-violations experiments are significantly more challenging, with polarimetry requirements **below 1%**, but as **low as 0.3 – 0.5 %**.


- Moller: e⁻ H (JLab)
- **P2**: e⁻ H (MESA)
- **SoLID/PV-DIS**: e⁻ ²H (JLab)

In support of JLab's mission to achieve <**0.5% accuracy** we embarked on a multi-year strategy to test our 5 MeV Mott polarimeter.


Our strategy for a precision of the MeV energy Mott polarimeter

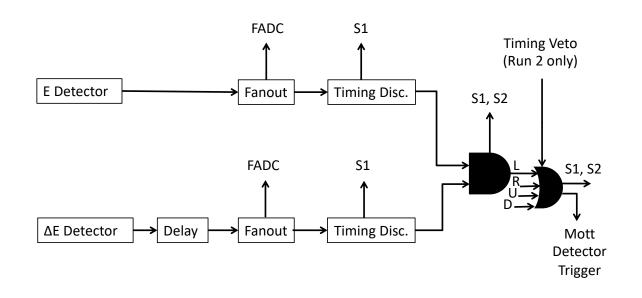
- 1. Careful selection of elastic events originating only from the target
- 2. Precise characterization of beam and instrumental uncertainties
- 3. Improving extrapolation to a single-atom of zero thickness
- 4. Modern arguments on the singleatom Sherman function
- 5. Test what we learned with further techniques & measurements


Step 1 – Improve and prepare Mott scattering chamber

Step 1 – Improve and prepare Mott scattering chamber

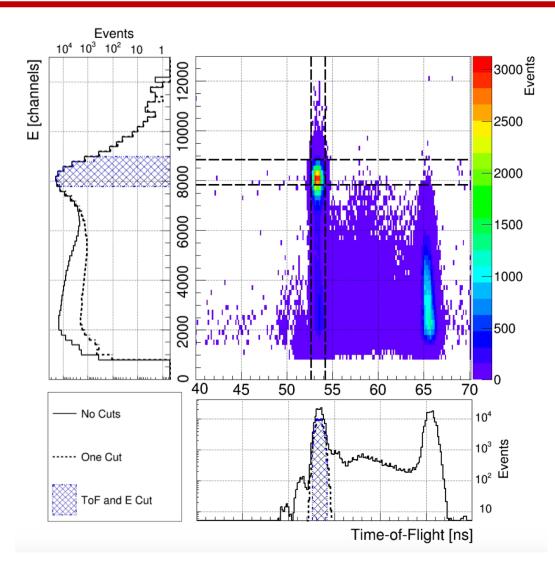
Used **10 foils** used with nominal thicknesses ranging from **50 nm to 1000 nm**, with duplicates at 50 and 350 nm

- Measured thickness of sibling foils (destructive) using Field Emission Secondary Electron Microscopy
- Uncertainties due to FESEM resolution & reproducibility, variation across sample and imaging
- Thickness consistent with vendor (Lebow in Chicago)
- Measurement uncertainty (5%) agrees with vendor siblings



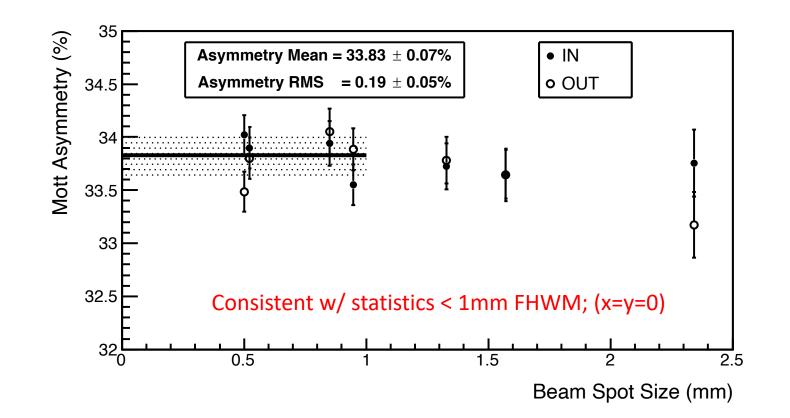
Lebow thickness (nm)	1000	870	750	625	500	355	225	50
FESEM thickness (nm)	943.7	836.8	774.5	561.2	482.0	389.4	215.2	52.0
FESEM uncertainty (nm)	59.8	44.2	41.9	31.0	27.7	22.1	11.7	4.7
Image analysis (nm)	29.0	7.1	9.1	8.0	9.7	4.5	1.9	2.3
FESEM resolution (nm)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Same image reanalysis (nm)	22.6	12.4	13.3	10.2	9.7	9.2	3.8	2.9
Lebow sibling 5% (nm)	47.2	41.8	38.7	28.2	24.1	19.5	10.8	2.6

TABLE IV. Summary of purchased target foils and their FESEM measured thicknesses and corresponding uncertainty.



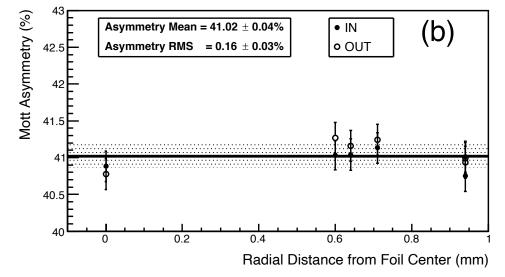
Step 1 – Fine tune the Data Acquisition & Analysis Chain

Data acquisition system collects coincidence event data

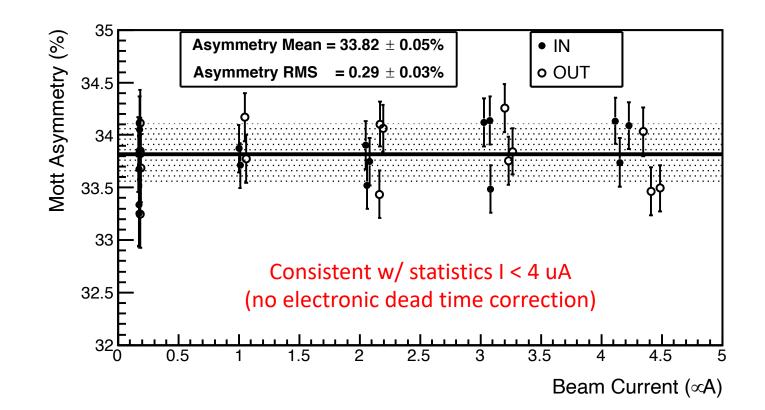

- Flash ADC samples energy spectra (<10 kHz)
- **Timing** resolution 34 psec, width of peak 380 psec
- Beam helicity & current are sampled, tagged to events
- Event data analyzed off-line in three step process (described in gory detail in PRC article)

Systematic uncertainty 0.1% on Energy and Timing cuts (see PRC article)

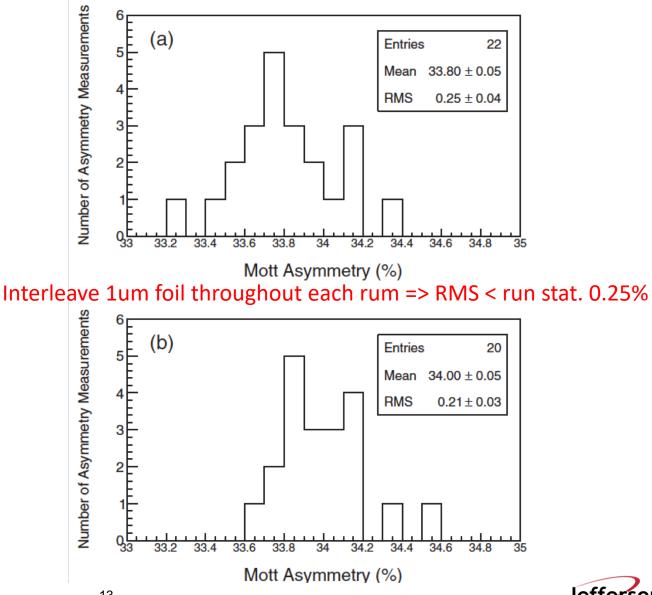
- Sensitivity to beam size
- Sensitivity to beam position
- Sensitivity to beam current
- Reproducibility
- Slow helicity reversal
- Beam Energy & Acceptance



- Sensitivity to beam size
- Sensitivity to beam position
- Sensitivity to beam current
- Reproducibility
- Slow helicity reversal
- Beam Energy & Acceptance



Consistent w/ statistics R < 1mm; (size < 0.5 mm FWHM)



- Sensitivity to beam size
- Sensitivity to beam position
- Sensitivity to beam current
- Reproducibility
- Slow helicity reversal
- Beam Energy & Acceptance

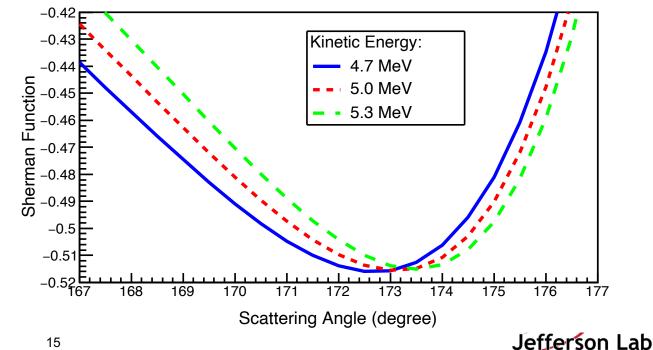
- Sensitivity to beam size
- Sensitivity to beam position
- Sensitivity to beam current
- Reproducibility
- Slow helicity reversal
- Beam Energy & Acceptance

on Lab

- Sensitivity to beam size
- Sensitivity to beam position
- Sensitivity to beam current
- Reproducibility
- Slow helicity reversal
- Beam Energy & Acceptance

Half of data collected with a λ/2 waveplate IN or OUT.
Statistical ratio for all measurements
Run1 1.0022 +/- 0.0020 Run2 1.0017 +/- 0.0021

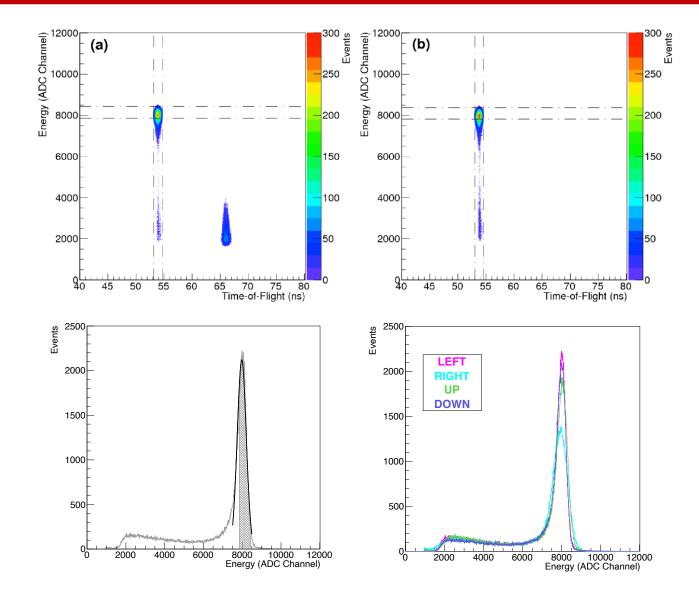
Laser polarization >99.8 +/- 0.1 %


Laser polarization systematic uncertainty (0.10%)

- Sensitivity to beam size
- Sensitivity to beam position
- Sensitivity to beam current
- Reproducibility
- Slow helicity reversal
- **Beam Energy & Acceptance**

Beam energies for Runs 1 & 2 E = 4.806 + - 0.097 MeV (2.0%)Run1 E = 4.917 + -0.013 MeV (0.3%)Run2 **Energy spread (dispersive region)** $\sigma_{\rm F}/{\rm E} < 4 \, {\rm keV}$ Runs 1,2 **Detector Acceptance** θ = 172.6 deg (d Ω = 0.232 msr) Runs 1,2

Systematic uncertainty 0.2% on Sherman function (0.514 +/- 0.001)


Experiment was done twice, with **10 months** in between

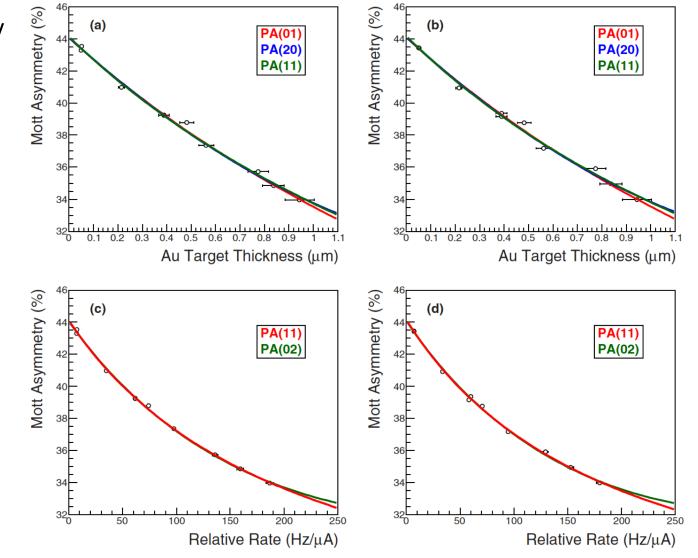
Run 1

- GaAs/GaAsP => #1
- Spin vertical => L/R arms
- Timing => **TDC**
- Energy => 4.806 +/- 0.097 MeV

Run 2

- GaAs/GaAsP => #2
- Spin horizontal => U/D arms
- Timing => hardware veto
- Energy => 4.917 +/- 0.013 MeV

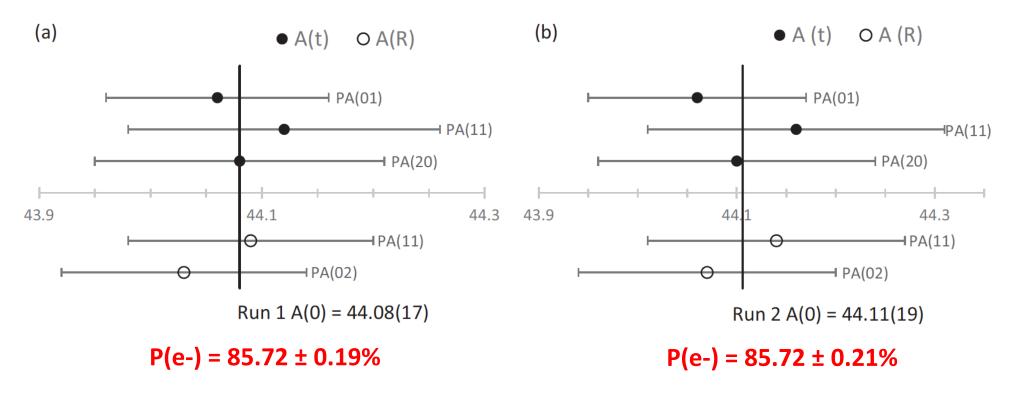
Step 3 – Improving zero thickness extrapolation


• No known functional form to account precisely for multiple-elastic scattering

Purely single – $A(t) = A(0)/(1 + \beta t)$. And double – $A(t) = A(0)[(1 + \alpha t)/(1 + \beta t)]$

• We **apply method of Padé approximates** to determine the statistically allowed polynomial

$$A = A(0) \frac{(1 + a_1t + a_2t^2 + a_3t^3 + \dots + a_mt^m)}{1 + b_1t + b_2t^2 + b_3t^3 + \dots + b_nt^n}.$$


• **High statistical precision** in relative scattering rate due to well known beam currents used

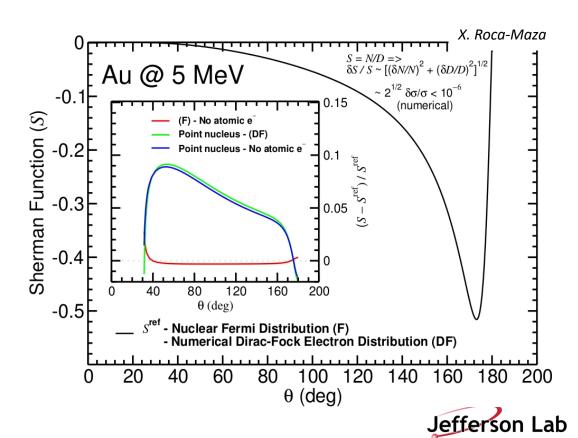
Step 3 – Improving zero thickness extrapolation

- Padé analysis rejects fits based on poor reduced chi-squared values and outcomes of F-tests
- Good agreement with *most* traditional forms (1,0) (0,1) (1,1) (0,2) (2,0)
- Our final reported values are **weighted average over all accepted fits** (no human biasing)

Step 4 – Single-atom Sherman function

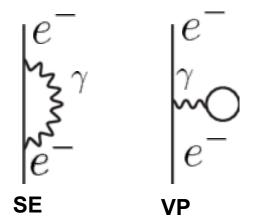
See X. Roca-Maza Eur. Phys. Lett. **120** 33002 (2017) & Salvat F., Jablonski A. and Powell C. J., Comput. Phys. Commun., 165 (2005) 157.

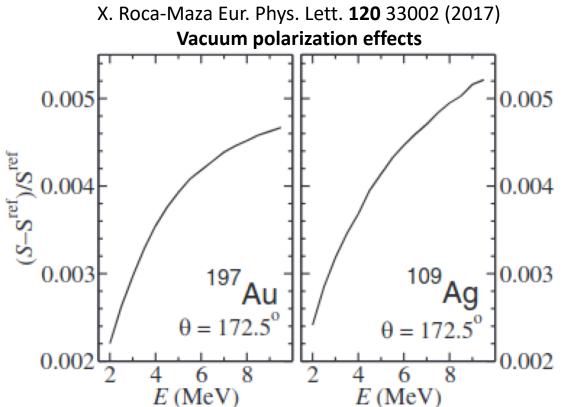
Relativistic (Dirac) partial-wave calculations from a local central interaction potential V(r)


$$\begin{bmatrix} \imath \vec{\alpha} \cdot \vec{\nabla} + \beta m + V(r) \end{bmatrix} \Psi(r) = E \Psi(r)$$
$$V(r) = V_{\text{Coul}}(r) + V_{\text{ex}}(r) - \imath W_{\text{abs}}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |f(\theta)|^2 + |g(\theta)|^2,$$
$$S(\theta) \equiv i \frac{f(\theta)g^*(\theta) - f^*(\theta)g(\theta)}{|f(\theta)|^2 + |g(\theta)|^2}$$

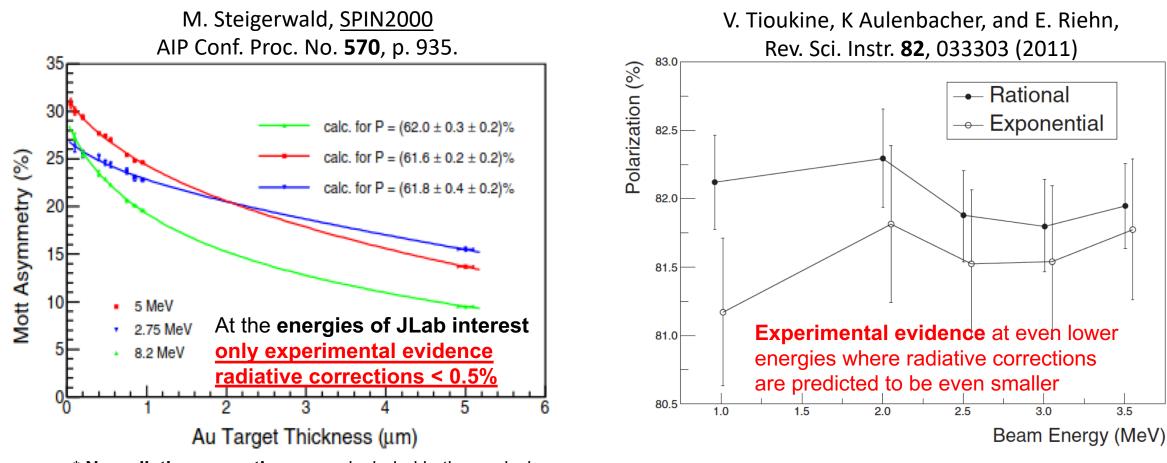
Scattering amplitudes (f and g) and $d\sigma/d\Omega$ are estimated from the convergence of partial-wave series, typically the numerical error in $S(\theta)$ is about 10^{-6} or smaller.


Effects in the Sherman function $S(\theta)$:


- $\rho_{ch} \rightarrow V_{coul}(r)$ ~0.1% depends on using a realistic Nuclear Model
- Electron exchange potential V_{ex}(r) is ~few ‰ if neglected
- Inelastic contributions $W_{abs}(r) < 0.1\%$ if neglected
- Screening from atomic electrons few % if neglected
- Radiative corrections do not amount to more than a 0.5% (<u>estimated!</u>).

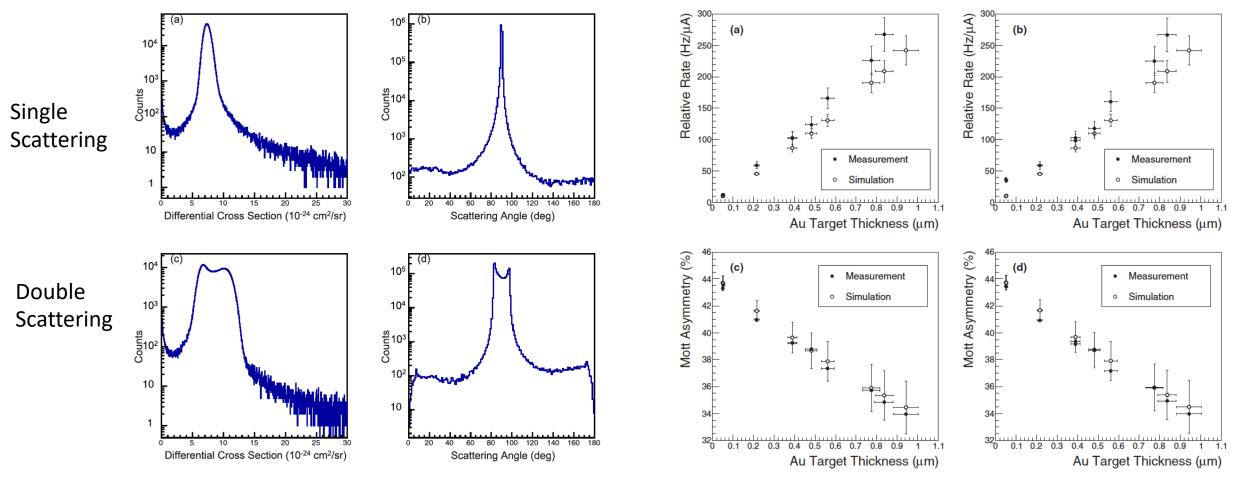
Radiative corrections give the largest contributions to the theoretical uncertainty in the Sherman function in the few-MeV energy range.

Leading QED corrections of the order of $\alpha^2 Z$ are the **self-energy (left)** and **vacuum polarization** (right). Both are predicted to **increase with energy** and **display a Z dependence**, but have **opposite sign and cancel** one another.



Measuring the Mott asymmetry from foils of different Z and with different Energy bounds the theoretical uncertainty.

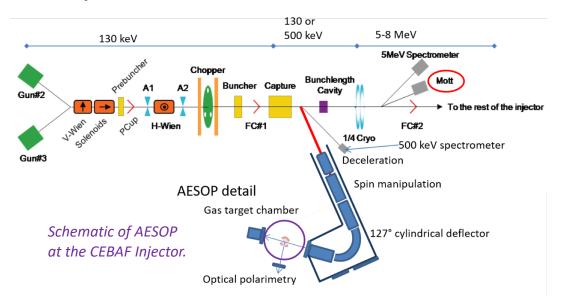
Step 4 – Single-atom Sherman function


Experimental evidence supports the net effect of these **corrections largely cancel** (as theoretically anticipated).

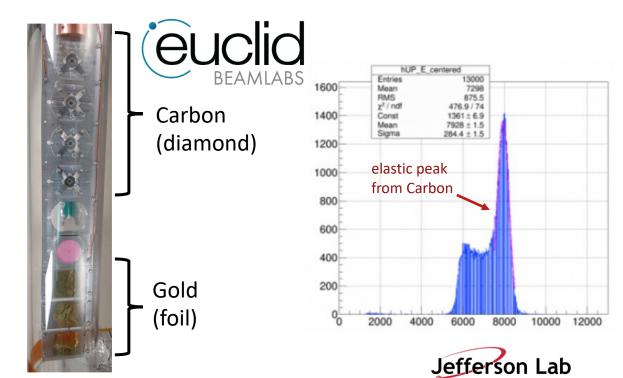
* **No radiative corrections** were included in the analysis of the Sherman function at these **three energies**.

Step 5 – Further techniques & measurements

- Sophisticated Monte-Carlo techniques used to compute scattering from "thick" targets into detector acceptance
- Simulations in good agreement with experimental data => confirms functional form from first principles


<u>Refer interested read to the journal article (too many details to discuss here)</u>

Step 5 – Further techniques & measurements


Accurate Electron Spin Optical Polarimeter (AESOP) is a project at the University of Nebraska-Lincoln using optical fluorescence to measure electron spin polarization.

- **Goal** is achieving an overall **accuracy of 0.3%** (T.J.Gay *et al.* Phys. Rev. A **65**, 2341).
- Two papers published on AESOP optical polarimeter systematic effects (Trantham *et al., Appl. Opt.* **59**, 2715 (2020) and Foreman and Gay, *Measurement Sci. and Tech.* in press)
- Construction of AESOP polarimeter with GaAs source is about 50% complete.

Mott Diamond Target experiment is a project between Jefferson Lab and industry partner Euclid BEAMLABS to **test radiative corrections** by scattering from **low-Z** carbon targets using **high current** electron beams

- First exploratory tests using diamond targets at CEBAF performed summer of 2021
- Developing Phase II proposal for a new polarimeter to operate efficiently with low-Z targets

PHYSICAL REVIEW C 102, 015501 (2020)

Multi-year effort concluded

Great team to work with, a lot of diversity to accomplish our goals

Results published last year (with more details) in **Phys. Rev. C**

Achieved total uncertainty **0.61%**

Exploring strategy to achieve an uncertainty of **<0.5%**

High precision 5 MeV Mott polarimeter

J. M. Grames[®],¹ C. K. Sinclair[®],^{1,*} M. Poelker,¹ X. Roca-Maza[®],² M. L. Stutzman[®],¹ R. Suleiman[®],¹ Md. A. Mamun,^{1,3} M. McHugh,^{4,†} D. Moser,¹ J. Hansknecht,¹ B. Moffit[®],¹ and T. J. Gay[®],⁵ ¹Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ²Departimento di Fisica, Universita degli Studi di Milano, and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano 20133, Italy ³Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA ⁴Physics Department, George Washington University, Washington, DC 20052, USA ⁵Jorgensen Hall, University of Nebraska, Lincoln, Nebraska 68588, USA

TABLE III. Uncertainty budget for the 5 MeV Mott polarimeter.

Contribution to the total uncertainty	Value		
Theoretical Sherman function	0.50%		
Target thickness extrapolation	0.25%		
Systematic uncertainties	0.24%		
Energy cut (0.10%)			
Laser polarization (0.10%)			
Scattering angle and beam energy (0.20%)			
Total	0.61%		

