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INTRODUCTION

It is explained how the CEBAF 123 MeV injection line
can serve as one big Stern-Gerlach (S-G) polarimeter mea-
suring the polarization state of the injected beam. No phys-
ical changes to the line are required and (though not op-
timal) resonant beam position monitors (BPMs) already
present in the line will detect the S-G signals.

The historical Stern-Gerlach apparatus used a uniform
magnetic field (to orient the spins) with quadrupole mag-
netic field superimposed (to deflect opposite spins oppo-
sitely) and a neutral, somewhat mono-energetic, unpolar-
ized, neutral atomic beam of spin 1/2 particles. For highly-
monochromatic, already-polarized beams produced by Jef-
ferson Lab electron guns, the uniform magnetic field has
become superfluous, and every quadrupole in the injection
line produces polarization-dependent S-G deflection.

Dual CEBAF electron beam guns produce superimposed
0.25 GHz (bunch separation 4 ns) electron beams for which
the polarization states and the bunch phases can be ad-
justed independently. For example, the (linear) polariza-
tions can be opposite and the bunch arrival times adjusted
so that (once superimposed) the bunch spacings are 2 ns
and the bunch polarizations alternate between plus and
minus. The effect of this beam preparation is to pro-
duce a bunch charge repetition frequency of 0.5 GHz dif-
ferent from the bunch polarization frequency of 0.25 GHz.
This difference will make it possible to distinguish Stern-
Gerlach-induced bunch deflections from spurious charge-
induced excitations.

Transverse bunch displacements produce narrow band
BPM signals proportional to the fr Fourier frequency com-
ponents of transverse beam displacement. Because linac
bunches are short there can be significant resonator re-
sponse at all of the strong low order harmonics of the
0.25 GHz bunch polarization frequency. The proposed
S-G responses are centered at odd harmonics, fr =
0.25, 0.75, 1.25 GHz, but not at even harmonics, such as
the 0.5 GHz bunch charge frequency. This greatly improves
the rejection of spurious “background” bunch displacement
correlated with bunch charge. For further background re-
jection the polarization amplitudes are modulated at a low,
sub-KHz frequency which shifts the S-G response to side-
bands of the central S-G frequencies.

The installed CEBAF beam position monitors are “an-
tenna BPM’s”, each consisting of four short, longitudinal,
probe antennas, symmetrically-located azimuthally, within
cylindrical beam tubes, Not themselves being narrow band,
these BPMs are more noise-sensitive than resonant BPMs.
But they have the important advantages of responding to
both symmetric and anti-symmetric modes over large fre-

quency range, for example at both 0.75 GHz and 1.0 GHz,
with the responses easily separable by narrow band exter-
nal filtering. Empirical beam steering to null their “com-
mon mode” responses at both even and odd harmonics of
0.25 MHz (which would all vanish for ideal beam prepa-
ration) is especially useful. This cancels both off-axis
background excitation at the fundamental beam charge fre-
quency and charge-imbalance background “leakage” from
even harmonics to odd harmonics, while preserving the
foreground S-G response differentially in the odd harmon-
ics. The paper suggests that resonant and antenna BPMs
would be comparably effective for isolating S-G signals.

The S-G signals to be expected at each BPM position
during routine (alternating polarization) CEBAF 123 Mev
electron injection line operation, are calculated for a
“proof-of-principle” test. Once successful, this test should
motivate the development of a passive (non-destructive)
form of high analyzing power, precision polarimetry.

STERN-GERLACH DEFLECTION OF A
RELATIVISTIC PARTICLE

We are primarily interested in the Stern-Gerlach deflec-
tion caused by the passage of a point particle with ve-
locity vẑ and rest frame, transversely-polarized magnetic
dipole moment vector µ∗xx̂, through a DC quadrupole, of
length Lq , that is stationary in the laboratory frameK. The
purpose of this section is to relate the Stern-Gerlach and
Lorentz force deflections in a quadrupole in a transfer line
such as the CEBAF injection line.

It is valid to formulate the calculation with an impul-
sive approximation, in which the integrated momentum im-
parted to a particle passing through a quadrupole is small
enough to justify neglecting the spatial displacement oc-
curring during the encounter and keeping track of only the
angular deflection. One also notes the particle speed is
conserved because it is only a longitudinal component of
force that can change the particle speed. The Stern-Gerlach
deflection in the electron’s instantaneous rest frame can
simply be copied from well-established non-relativistic
formalism[1]; the transverse force is given by

F̃ ′x̃ = µ∗x̃
∂B̃′x̃
∂x̃′

. (1)

All coordinates and components have been assigned over-
head tildes for reasons to be justified shortly. Following no-
tation of Conte[2], the rest frame magnetic moment is sym-
bolized by µ∗ to stress that it is specific to the rest frame,
irrespective of whatever reference frame is being discussed.
As viewed in the K ′ rest frame, the passing magnet is



Lorentz-contracted to length Lq/γ, the time spent by the
particle in the magnetic field region is L′q/v, and the inte-
grated, rest frame transverse momentum impulse is

∆̃p′x = F̃ ′x̃
L′q
v

=
µ∗x̃
v

∂

∂x̃′
(B̃′x̃L

′
q). (2)

To determine B̃′x the laboratory magnetic field B̃x̃ needs to
be Lorentz transformed to the moving frame K ′. This pro-
duces both an electric and a magnetic field, but it is only
the magnetic field that produces Stern-Gerlach displace-
ment in the particle’s rest frame. The Lorentz transforma-
tion yields[3] B̃′x̃ = γB̃x̃. We conclude that the product
B̃x̃Lq = B̃′x̃L

′
q is the same in laboratory and rest frames.

Since the displacement x̃ = x̃′ and the transverse momen-
tum component ∆̃p

′
x̃ = ∆̃p

′
x̃ are also invariant for Lorentz

transformation along the z axis, Eq. (2) becomes

∆̃p
SG

x̃ = F̃x̃
Lq

v
=
µ∗x̃
v
Lq

∂B̃x̃

∂x̃
, (3)

and similarly ∆̃p
SG

ỹ . The “SG” superscripts have been
introduced to distinguish Stern-Gerlach deflections from
Lorentz force deflections.

The conclusion so far is that formula (3), derived histor-
ically using non-relativistic kinematics, is valid even for
relativistic particle speed. Of course, because v cannot
exceed c, the transverse force saturates as the particle be-
comes relativistic. Since the particle momentum continues
to increase proportional to γ, the S-G angular deflection in
a fixed quadrupole field falls as 1/γ.

All coordinates so far have been given tildes since they
are “skew” coordinates in conventional accelerator termi-
nology. The “erect” coordinates are (x, y) and each iron
pole tip of an erect quadrupole is a hyperbola asymptotic
to an x and a y axis. The magnetic field components of an
erect DC quadrupole are given by

Bx = ky, By = kx, where k =
∂Bx

∂y
=
∂By

∂x
, (4)

Treating a quadrupole of length Lq as a thin lens, the
Lorentz force on a point particle of mass m and charge e
traveling with velocity vẑ through the quadrupole imparts
momentum

∆p = F(x, y) ∆t = eLqk(yŷ − xx̂). (5)

The relativistic longitudinal particle momentum of the par-
ticle is p = γmv and its (small) angular deflections are
given by

∆θxx̂ + ∆θyŷ =
∆p

p
= qxxx̂ + qyyŷ, (6)

where inverse focal lengths qx = 1/fx and qy = 1/fy of
the quadrupole satisfy

qx = −eLqk

p
= −Lqc∂By/∂x

pc/e
= −qy. (7)

Relating skew and erect reference frames produces

B̃x̃ = kx̃, B̃ỹ = kỹ, k =
∂B̃x̃

∂x̃
=
∂B̃ỹ

∂ỹ
, (8)

and

∆̃p
SG

x̃ =
µ∗x̃
v
Lqk, ∆̃p

SG

ỹ =
µ∗x̃
v
Lqk, (9)

as the Stern-Gerlach transverse momentum impulses in the
quadrupole under discussion. The Stern-Gerlach angular
deflections are given by

∆̃θ
SG

x̃ =
∆̃p

SG

x̃

p
=
µ∗x̃Lqk

pv
, (10)

and similarly for y. Comparing with Eqs. (7), one sees that
(except for orientation issues) the Stern-Gerlach deflection
in a quadrupole is strictly proportional to the inverse focal
lengths of the quadrupole;

∆̃θ
SG

x̃ = − µ∗x
ecβ

qx, and ∆̃θ
SG

ỹ =
µ∗y
ecβ

qy, (11)

These formulas are boxed to emphasize their universal ap-
plicability to all cases of polarized beams passing through
quadrupoles. For all practical cases β ≈ 1. With µ∗x and
µ∗y differing from the Bohr magnetron µB only by sin θ
and cos θ factors respectively, a convenient physical con-
stant for the evaluation is

µB

ec
= 1.932× 10−13 m. (12)

Numerically, Eq. (11) yields Stern-Gerlach-induced,
Courant-Snyder betatron amplitudes proportional to√

βx ∆̃θ
SG

x̃ = −(1.932× 10−13 m)
√
βx qx, (13)

and similarly for y. The
√
β factor has been included be-

cause the transverse displacement ∆xj at downstream lo-
cation “j” caused by angular displacement ∆θi at upstream
location “i” is given (in either plane) by

∆j =
√
βjβi ∆θi sin(ψj − ψi). (14)

where ψj − ψi is the betatron phase advance from “i” to
“j”, and ∆j stands for either ∆xj or ∆yj .

Deflection formulas (11) exhibit no explicit dependence
on γ. This is only because the angular deflections are ex-
pressed in terms of quadrupole inverse focal lengths. For a
given quadrupole at fixed quadrupole excitation, the inverse
focal length scales as 1/γ. This has the effect of “hiding”
the 1/γ Stern-Gerlach deflection dependence, which is due
to the proportionality to γ of the beam stiffness.

From here on, we neglect the complication coming from
the distinction between skew and erect coordinate frames.
The formulas just derived are next evaluated numerically
for the CEBAF injection line.
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Figure 1: Beta functions for the current 123 MeV injection
line optics. Points are plotted only at current quadrupole,
BPM, and beam charge monitor (BCM) locations.

BEAM LINE APPARATUS AND OPTICS

Beamline beta functions are shown in Figure 1. To fa-
cilitate the interpretation of S-G deflections the only points
plotted are at the locations of quadrupoles, BPMs, or beam
charge monitors (BCMs).

Table 1 shows the integrated S-G responses at all
available BPMs. These are phasor sums of the contri-
butions from all quadrupoles upstream of the particular
BPM. Table 2 gives the phasor contributions from indi-
vidual quadrupoles for the case of just one of the BPMs,
(IPM0R07).

Table 1: Accumulated S-G betatron responses at all
beamling BPMs. For one particular BPM, namely
IPM0R07 spelled-out betatron contributions from its up-
stream quadrupoles are given in Table 2.

s BPM label <(ax) =(ax) <(ay) =(ay) K
m Eq.(14) Eq.(14) MeV

3.38 IPM0L02 -0.15 -0.02 -0.15 -0.02 6
9.14 IPM0L03 -1.80 -1.16 -2.62 2.27 6
12.43 IPM0L04 6.41 0.63 1.57 -2.15 6
22.25 IPM0L05 -0.25 0.94 -1.32 -1.18 6
31.80 IPM0L06 1.89 1.47 1.55 -0.87 6
32.95 IPM0L06A -0.24 1.70 0.45 0.19 6
34.01 IPM0L07 -2.04 0.99 -0.07 -0.11 6
35.08 IPM0L08 -1.79 -0.95 0.71 -0.48 123
36.14 IPM0L09 -0.02 -1.24 1.82 0.68 123
37.21 IPM0L10 0.56 -0.12 0.62 2.43 123
41.66 IPM0R01 1.90 -1.29 1.90 -4.25 123
44.50 IPM0R02 -1.05 4.58 1.41 3.16 123
54.17 IPM0R03 -9.12 -3.64 0.10 1.73 123
59.85 IPM0R04 -0.90 0.72 3.93 -3.46 123
65.54 IPM0R05 -7.51 -0.57 -2.92 -1.13 123
71.22 IPM0R06 -1.30 -0.07 -0.41 5.80 123
76.91 IPM0R07 -8.64 4.05 3.01 0.39 123
86.58 IPM0R08 0.33 -4.24 -1.33 4.52 123
89.41 IPM0R09 0.58 2.25 -2.83 -4.97 123

Table 2: . Individual betatron amplitude contributions
from each listed quadrupole to a particular BPM (namely
IPM0R07). The coherent sum of these amplitudes produces
that BPM’s accumulated amplitudes listed in Table 1.

quad label squad <(ax) =(ax) <(ay) =(ay) K
MQJ0L02 3.19 0.33 -3.60 -0.04 0.47 6

MQJ0L02A 3.80 2.06 4.66 -0.17 -0.39 6
MQJ0L03 9.62 -0.27 0.17 -0.59 0.36 6
MQJ0L04 12.77 0.15 -0.00 0.02 -0.00 6
MQD0L06 32.17 -0.04 0.02 1.29 -0.65 123
MQB0L07 34.38 0.63 0.70 -0.10 -0.11 123
MQB0L08 35.44 0.92 -0.04 -0.68 0.03 123
MQB0L09 36.51 -0.80 1.09 1.16 -1.58 123
MQB0L10 37.58 -0.18 -0.68 0.25 0.93 123
MQD0R01 41.99 -1.13 -1.14 2.17 2.19 123
MQD0R02 44.82 0.00 -0.95 -0.00 0.87 123
MQD0R03 54.49 -5.24 1.02 1.75 -0.34 123
MQD0R04 60.18 0.11 0.53 -0.60 -2.79 123
MQD0R05 65.86 -5.43 1.27 -1.70 0.40 123
MQD0R06 71.55 0.25 0.99 0.25 0.99 123

S-G SPECIFIC BEAM PREPARATION
The smallness of the S-G signal, especially relative to

spurious charge-sensitive cavity responses mimicking the
S-G signal, make it critical for the polarized beam to be
prepared for maximum rejection of spurious background.

Recent ILC-motivated BPM performance investigations
[4][5][6][7] are relevant to our proposed Stern-Gerlach (S-
G) detection experiment. Resonant beam position detec-
tion relies on two TM cavities. The charge-sensitive cav-
ity (needed to normalize the charge) is tuned to resonate
in a transversely symmetric mode at the bunch frequency.
The position-sensitive cavity is tuned to resonate in a trans-
versely asymmetric mode at the bunch frequency. ILC
tests have typically employed cylindrical TM010 mode for
charge, TM110 mode for position, with (x, y) mode degen-
eracy broken by output coupling.

(By the Heisenberg uncertainty principle) it would not be
feasible to locate a single mono-energy electron with use-
fully small transverse accuracy. This makes the electron
charge e unnaturally small for present purposes. For com-
parison we define a “standard macro-charge” as the charge
of Ne = 1010 electrons, which is a typical number of elec-
trons in each bunch in an ILC BPM prototype test. Classi-
cal (rather than quantum) mechanics is adequate for treat-
ing the centroid motion of such a large number of electrons,
even as regards their mean spin orientation.

A CEBAF beam is CW, with beam current of, say,
160µA, which corresponds to a current of about 105 (just-
defined) macro-charges per second. For S-G detection the
Ångstrom is a convenient transverse length unit for S-G de-
tection. For successful ILC operation the transverse beam
positions need to be controlled to about ±10 Å.

The bunch structures of the CEBAF injector (123 MeV,
160µA, 0.5 GHz) and the Accelerator Test Facility (ATF)
at the KEK laboratory (1.3 Gev, Nee = 1010e macro-
charge at 5 Hz pulse rate) are very different. We ignore
the energy difference, which is thought to be unimportant
for the comparison. For a typical cavity resonator quality
factor of Qr = 104 and frequency of 1 GHz, the cavity



discharging time is far shorter than the ATF repetition pe-
riod. This makes it appropriate to treat the ATF resonant
response on a pulse-by-pulse basis. Essentially different in
time structure, the CEBAF resonator response is continu-
ous wave (CW) with the previously-defined macro-charges
passing through the cavity at 100 kHz rate.

In a linac beam line, the fact that each bunch passes an
S-G sensitive BPM only once, makes it hard to arrange for
the polarization of successive bunches to be different. As
already explained, high frequency bunch polarization mod-
ulation frequency is made possible by superposing stag-
gered bunch trains having different polarizations. Figures 2
and 3 illustrate such a superimposed CEBAF bunch train.
Bunches are labeled A in one of two pre-superimposed
bunch trains and labeled B in the other. Figure 3 shows
the resulting beam charge and beam polarization frequency
spectra. The foreground S-G betatron signal oscillates at
(harmonics of) 0.25 GHz, while the background charge sig-
nal oscillates at (harmonics of) 0.5 GHz. The bottom graph
of Figure 3 shows how the S-G signal could be detected
using a resonant BPMs. Ideally the S-G detector would
be tuned to the 0.25 GHz fundamental. But such a cav-
ity would be inconveniently large. Rather the S-G detector
could be tuned to the third harmonic at 0.75 GHz. This is
not a harmonic of the charge sensitive mode. This maxi-
mizes the foreground response while cancelling the back-
ground response.

We assume the polarization of the superimposed A and
B beams are also modulated with (low) frequency ωm.
The time domain, i p(t) current-polarization products of
the separate A and B beams are then given by

i pA(t) =

∞∑
n=−∞

δ(t− nT0)(A+ a cosωmt) (15)

i pB(t) =

∞∑
n=−∞

δ(t− T0/2− nT0)(A+ a sinωmt).

and are plotted on the left in Figure 2. The modulation am-
plitude a is necessarily smaller in magnitude than the un-
modulated polarization amplitude A. There are two essen-
tial differences between the A and B beams. The more es-
sential difference is that the beam pulses are shifted in time
by one half cycle. The less essential difference is that the
cosine modulation has been replaced by sine modulation.
(Other polarization modulations are possible.) Compared
to the resonant frequency, the modulation frequency ωm (in
the kHz range) is exaggerated by many orders of magnitude
in this figure. Champeney[9] gives the A-beam, cosine-
modulated current-polarization Fourier transform IPA(ω)
to be

I PA(ω) =

∞∑
n=−∞

2π

T0

(
Aδ
(
ω − n2π

T0

)
+ (16)

+
a

2
δ
(
ω − n 2π

T0
+ ωm

)
+
a

2
δ
(
ω − n 2π

T0
− ωm

))
.

The Fourier transform of the B-beam, sine-modulated,
current-polarization Fourier transform is obtained by mul-
tiplying by the time-shift factor, e−iT0ω/2 which, when
moved inside the summation, its ω factor can be replaced
by 2πn/T0, due to the delta function having argument
ω−2πn/T0. The resulting (−1)n factor causes the sign al-
ternation exhibited in the lower right graph in Figure 2. Be-
cause the modulation frequency is so low the correspond-
ing time shift of the modulation is being neglected.
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Figure 2: Time domain and frequency domain beam pulses
for A and B staggered and modulated-polarization beams.
Broken Fourier amplitude lines indicate they are “pure
imaginary”, proportional to “i”. In summing the A and B
beam polarization signals the odd harmonics cancel and the
even harmonics add, in effect cutting the polarization fre-
quency in half. As required, all harmonics of the beam cur-
rent itself add constructively, thereby conserving the beam
current fundamental frequency.
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Figure 3: The top plot shows frequency spectra of the in-
dividual (staggered) A and B bunch currents. The beam
polarization side bands result from the A and/or B polar-
izations being modulated. The middle plot shows the fre-
quency spectrum of the superimposed A and B bunch cur-
rents. The dominant lines are at twice the frequency of the
individual currents. Mismatch of A and B currents pro-
duces spurious lines coinciding with polarization lines. To
lift the (x, y) degeneracy this figure has been calculated for
rectangular cavities, rather than the actual CEBAF BPMs.



BACKGROUND REJECTION

The only serious impediment to S-G detection is spuri-
ous cavity response to bunch charge rather than to bunch
polarization. This section describes procedures to be em-
ployed in distinguishing S-G signals from background.
Centered cavity. Conventional BPM beam centering
relies on exact cavity centering for which, ideally, there
is no direct charge excitation at the position mode fre-
quency. Roughly speaking, the ILC BPM prototypes have
so far achieved absolute transverse position reproducibility
of ±15 nm, for bunch to bunch variation of beam bunches
containing Ne = 1010 electrons. This is roughly an order
of magnitude greater than (i.e. inferior to) their theoretical-
minimum expected resolution of ±1.8 nm. The authors
(persuasively) ascribe their BPM performance short-fall
primarily to error sources other than thermal noise, such
as instrument imperfections or cross-talk from spurious,
forbidden-mode response to bunch charge.

The “good news” to be drawn from their ±1.8 nm noise
limit is that, with long time averaging, because of the high
average CEBAF beam current, coherent betatron oscilla-
tion amplitudes as small as, say, 0.01 Å can be expected
to emerge from thermal noise, even with room temperature
cavities. The “bad news” is that there is little reason to sup-
pose that S-G selectivity (relative to spurious background
excitation) can be improved appreciably by increasing data
collection times. Based on this estimate, an S-G induced
betatron amplitude of 0.01 Å, though distinguishable from
thermal noise in a single, carefully-centered, conventional
resonant BPM, can be expected to be dwarfed by a back-
ground/foreground ratio of more than one thousand. This
limitation is specific to the beam position and beam charge
signals occurring at the same frequency, as in conventional
beam position centering.
Disjoint polarization and charge frequencies. As ex-
plained earlier in connection with Figure 3, the polarized
beam is to be tailored so that the bunch polarization and
bunch charge frequencies are different. In this condition
the BPM cavity is sensitive to polarization at one frequency
(0.75 GHz) and to charge at a different frequency (such as
0.5, or 1.0 GHz). Ideally, the resulting frequency domain
filtering will suppress the spurious background response by
many orders of magnitude. More realistically, there will
still be background response, for example due to the small
Fourier component of charge excitation due to not-quite-
cancelling beam A and beam B currents. Still one can
expect significant background/foreground suppression—
perhaps three orders of magnitude, especially by empirical
nulling common mode signals at both even and odd har-
monics of 0.25 MHz.
Sideband shift of polarization frequency. As explained
previously, the effect of low frequency modulation of the
beam polarizations is to shift the S-G response to sidebands
of the central cavity resonance. To the extent the beam cur-
rents are unaffected by this modulation, the sideband re-
sponse will provide a pure S-G signal. In practice the beam

currents will, in fact, also be weakly modulated which will
allow some background signal to leak out to the side-band
frequencies.
Multi-detector response modeling. Referring again to
the BPM listing, one notes that foreground S-G response
is being monitored, with various (well known) degrees of
sensitivity, in both x and y planes at 19 BPM locations. The
extent to which the beam charges are being low-frequency
modulated at the gun can be parameterized with a few pa-
rameters, such as 4, the main one describing charge imbal-
ance. Modulation of initial (low energy) beam angles will
also mimick S-G signals in individual BPMs. The corre-
sponding betatron amplitudes are adiabatically damped by
the subsequent acceleration, but they may remain signifi-
cant. But there is no reason to suppose that the downstream
sensitivity to starting beam conditions is correlated with S-
G sensitivity. If true, any spurious side-band responses can
be subtracted by a model fitted to match the total responses
at all BPMs.
Lock-in signal detection. Though not mentioned pre-
viously, it is also true that the resonator responses will be
coherent with the beam bunch frequency. By lock-in de-
tection, the in-phase and out-of-phase S-G sideband de-
flections can be determined individually. This can serve
to corroborate the response model just described.
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