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Abstract. There have been recent proposals to measure the electric dipole moment
(EDM) of fundamental charged particles, especially proton, deuteron, and electron.
Any non-zero EDM would imply violation of both time reversal (T) and parity (P)
conservation and could help to account for the particle/anti-particle imbalance in the
present day universe.

For this measurement the particles circulate in a storage ring with their spins
“frozen”, for example parallel to their velocities. Polarimetry is required both to
stabilize the frozen spin operation and to measure the EDM-induced precession. The
efficiency of currently available polarimetry, especially for electrons, is too low to
permit phase-locked loop stabilization of the beam polarization. A new, as yet un-
proved “resonant, Stern-Gerlach polarimetry” directly measures the magnetization of
bunches of polarized electrons, or other charged particles.

To confirm the practicality of resonant polarimetry, first proposed by Derbenev
in 1993, and resurrected by Talman in 2012, various tests have been proposed, but
not yet performed. This paper is intended to clarify various issues, both experimen-
tal and theoretical, and to propose a multi-step plan for developing Stern-Gerlach
polarimetry.

A first, proof-of-principle, test using polarized electrons in the extraction line of
the CEBAF recirculating linac at Jefferson Lab is proposed. The goal of the test
would be to demonstrate measureably large excitation of a room temperature copper
cavity by a beam of transversely polarized electrons. Slanted, off-axis beam passage
through a rectangular TE202 mode resonator largely defeats a source of destructive
interference that has discouraged previous attempts. Sensitivity to magnetic end
fields of the cavity is to be investigated using DC magnets.

Once the resonance has been successfully and inexpensively demonstrated, ap-
plication of Stern-Gerlach resonance for polarimetry can be developed and greatly
improved by using high Q superconducting cavities and sensitive low temperature
readout instrumentation.
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1. Proposed Stern-Gerlach polarimetry development plan

This section is closer to being conclusions than it is to being a conventional in-
troduction. Results from later in the paper are surveyed with brief explanation, with
details deferred to later sections. The final section, titled “Recapitulation and conclu-
sions”, explains why this paper is more nearly a development plan for Stern-Gerlach
polarimetry than it is an exposition of theoretically possible polarimeter performance.

A practical first step toward the development of Stern-Gerlach polarimetry would
be a demonstration of resonant excitation of an RF cavity by a polarized beam. A high-
Q cavity will be resonantly excited to an amplitude proportional to the beam current
multiplied by the beam polarization. Prospects for this technique were discussed most
recently in early 2016 at a three day Jefferson Lab workshop on the subject. The
workshop was attended by researchers from Jefferson Lab, Cornell, Juelich-COSY and
Bonn-ELSA labs in Germany, and others, and a tentative collaboration was established.

Because of the large electron magnetic moment, a polarized electron beam, either
from a linac or in a storage ring, is favored over protons or deuterons for the first
demonstration of Stern-Gerlach polarimetry. As well as its potential value for po-
larimetry, the physics of magnetic moments moving relativistically through a resonant
cavity is itself of fundamental importance.

Resonant polarimetry was first proposed in 1993 by Derbenev[1]. The expected
cavity response was calculated by Conte et al.[2] in 2000. An experimental test at
MIT Bates Lab was proposed[3] in 2001, but not performed. This may have been
because, at that time, the interaction between polarized beam with a resonant cavity
was controversial (as it still is, but to a far lesser extent). The importance of this
controversy, and the way it can be resolved forms a significant fraction of this paper.
The resonant polarimeter idea was resurrected by Talman in 2012, motivated by the
need to control a “frozen spin” polarized electron or proton beam, appropriate for
measuring their electric dipole moments.

The original Conte et al. Stern-Gerlach resonator configuration is illustrated on
the top left of Figure 1. The configuration for the proposed CEBAF test is shown in
the top right of the figure. The lower figure shows a more complicated, dual resonator,
configuration that would be appropriate for “transparent” inclusion in a storage ring
EDM experiment.
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Figure 1. Stern-Gerlach polarimeter cavity insertions in polarized
beam lines; on-axis beam top left; skew beam with external DC magnetic
fields top right; skew incidence with dual resonators with DC magnetic
fields at the bottom. DC magnet coils are not shown. The cavity dimen-
sions have been adjusted for a possible test in the CEBAF extraction
line; they are not matched to a possible storage ring test described later
in this paper.
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The resonator is a conventional, rectangular, TE mode cavity, with standard, on-
axis passage of the beam through the cavity. In 2008, C. Tschalaer[4] showed theoreti-
cally that this configuration is guaranteed to give zero Stern-Gerlach cavity excitation.
My explanation, consistent with Tschalaer’s, led to the configuration shown in the up-
per right of Figure 1. The slanted trajectory through the cavity overcomes much of
the destructive interference present with on-axis passage. The complete cancellation
for on-axis passage is embarrassingly elementary:

Accelerating cavities use TM modes, with the acceleration being due to longitudinal
cavity electric field. To the contrary, magnetic moment detection requires TE modes,
to take advantage of their longitudinal magnetic fields. In the present context the
essential difference between TM and TE modes is the boundary conditions on the
entrance and exit sufaces of the cavity. In both cases the electric field has to be normal
to the surface, and the magnetic field parallel to the surface. In TM modes, electric
field normal to entrance and exit surfaces is ideal for charged particle acceleration,
since longitudinal electric field is what is essential for applying a longitudinal force to
the particles.

But it is longitudinal magnetic field that enables a magnetic moment to transfer
energy to the cavity. This calls for TE cavity modes. By the boundary condition
already mentioned, TE modes necessarily have stationary nodes for longitudinal mag-
netic field at both entry and exit. On entering the cavity, at no matter what phase
(relative to the cavity oscillation) the particle encounters a purely transverse magnetic
field. Along the particle path the longitudinal magnetic field first increases from zero
and then decreases symmetrically back to zero at the exit. Any work done during the
field-increasing interval is cancelled during the field-decreasing interval, and there is
no net cavity excitation. For Stern-Gerlach resonance this rules out on-axis passage
through any cavity, cylindrical or rectangular.

To overcome this cancellation the resonator can be canted as shown on the top right
in Figure 1. Calculation of cavity excitation is illustrated in Figure 2. The arrows in
these figures represent magnetic field lines. The cavity walls are not shown. Figure (a)
shows a TE201 mode. As just explained, on-axis beam passage of a polarized beam
through this (or any) cavity would produce zero excitation.

Skew injection at (quite extreme) 45 degree angle is indicated by the slanted line.
As it happens, direct calculation gives exactly zero cavity excitation also in this case.
It is because the actual waves making up the TE201 mode are traveling at exactly
±45 degrees. As with 0 degree entry, this is an exceptional case.

(Incidentally, the vanishing of integrated body force within the cavity does not
guarantee the exact absence of total cavity exitation; the effect of end fields must also
be included. Integration of the work done by a longitudinal Stern-Gerlach force acting
over the interior of the cavity bounded by discontinuous edges at the ends includes, to
a first approximation, a contribution from the end fields. With gentler, less abrupt,
edges, the work done from “half-way up” the entrance field to “half-way down” the exit
is already approximately included. When approximated by an idealized, internal to
cavity calculation, what is not included is the perturbative effect of the fields bulging
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out from the resonator into the adjacent waveguides. The influence of end fields remains
controversial, and requires evaluation going beyond what is contained in this paper.)

A less extreme, Θ = 26.57 degree skew entry is illustrated in Figure 2 (c). The (x, z)
coordinates have been converted to dimensionless angles (x̃, z̃) to simplify calculations.
Dimensions are given in the figure on the right. (Because these dimensions have been
somewhat altered to match the proposed CEBAF test, they may not be quite consistent
with other calculations later in the paper.) In this case there is a “race” between
particle traveling at speed V in the skew direction and a wave front moving parallel to
the z-axis at waveguide phase velocity vg (which is

√
2 c in this case). For maximum

excitation the phase difference at the exit would be ±π (or any odd multiple) since
this would correspond to perfect longitudinal magnetic field reversal during transit. A
penalty function P(Θ), where Θ is the skew entrance angle, expresses the excitation
fraction imposed by the geometry. In the TE202 case shown, the penalty function is
later calculated to be P(26.57◦) = 0.25, meaning the exitation is 1/4 of the maximum
possible.
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Figure 2. (a) TE201, Θ = 45◦ case. Tildes indicate dimensionless coor-
dinates. Arrows are magnetic field lines. Cavity walls are not shown. In
this TE201 case P(45◦) = 0 because the longitudinal Stern-Gerlach force
vanishes identically on this trajectory. (b) Erect and skew coordinate
frames. (c) For the TE202, Θ = 26.6◦ case, P(26.6◦) = 0.25. This result
follows from the difference between wave phase velocity vp and particle
velocity V .
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There is yet another source of destructive interference that suppresses cavity exci-
tation by the passing magnetized beam bunch. In a 2015 report, Tschalaer[6] shows
that, integrating from a point of zero magnetic field before the cavity to a point of zero
magnetic field after the cavity, the recoils occurring within the cavity are cancelled by
recoils in the external end fields of the cavity as shown at the bottom of Figure 1. DC
magnetic field regions adjacent to the RF cavity overcome the cancellation, by mov-
ing the zero magnetic field points to remote locations that cannot influence the cavity
excitation. Transient coupling effects in the cavity are not included in the Tschalaer
formulation.

The configuration shown at the bottom of Figure 1 has been further complicated
by the presence of two, rather than one, cavity. The four DC magnetic bends form
a “chicane” whose amplitude can be varied with only a very small change in orbit
circumference, but with no change in closed orbit outside the chicane region. This
degree of complexity is likely to be required for successful Stern-Gerlach polarimetry
in a storage ring, but is unnecessary for an initial CEBAF test.

Cavity excitation can be expressed as energy deposited per beam particle passing
through the resonator. There are three important cavity excitations. The first is direct
excitation ∆EeTM,max of the nearest (in resonance frequency) TM mode, excited by
the passage of the charge itself. This is the dominant “background”. Because of the
high Qr-value and the frequency difference ∆f , this excitation can be filter suppressed
by a small factor, f/(Qr∆f). Even so, this excitation will dominate unless the Qr∆f
factor is large. ∆Em‖TE,max and ∆Em⊥TE,max are “foreground” resonator excitations
due to longitudinal and transverse beam polarization components, at the Stern-Gerlach
resonator frequency fSG, to which the excitation frequency is tuned. As with nuclear
magnetic resonance, the resonance can be detected by scanning the beam energy, which
scans the spin tune through Stern-Gerlach resonance.

Theoretical values for these three excitations are expressed in the following ratios:

∆EeTM,max : ∆Em‖TE,max : ∆Em⊥TE,max = eE‖ : kγ
V
µ∗eµ0H‖ : P(Θ) kγ2

V
µ∗eµ0H‖. (1)

Here e is electron charge, k is laboratory frame vacuum wave number, and µ∗e is electron
magnetic moment. E‖ is the resonator electric field in a TM resonator mode; H‖ is
the resonator magnetic field in a “matching” TE mode resonator mode. Dependence
on beam relativistic factor γ

V
is of critical importance, expecially for the response

to transverse polarization. We have pretended that longitudinal magnetic field H‖
(measured in A/m) is given in terms of E‖ (measured in V/m) by H = E‖/Z0 where
the value of free space impedance Z0 is 377 ohms, even though this is strictly true
only for transverse fields in free space. This means that, for simplicity, we ignore the
detail that, for longitudinal waveguide fields, the impedance is somewhat (but not very)
different from Z0. The purpose for this approximation has been to make E‖ appear
as a common factor in Eqs. (1). This is convenient for estimating relative excitations.
Noting that µ0/Z0 = c, a convenient physical constant for the magnetic vs electric
comparison is the length

µ∗e
ec

=
0.928× 10−23 J/T

(1.602× 10−19 C)× (2.9979× 108 m/s)
= 1.932× 10−13 m. (2)
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Dimensionally this length factor cancels the inverse length dimensionality of k in
Eqs. (1). Along with laboratory length d of the resonant cavity, this factor dominates
the comparison of “background” electron charge source “e” to the “foreground” mag-
netic dipole source strength µ∗e/(cd). A basic, dimensionless, Stern-Gerlach/electric
excitation ratio is

Stern−Gerlach

electric charge
=
µ∗e
ec

2π

λ
≈ 2.0× 10−12 (3)

where a typical value for the cavity length has been used to produce a typical k value.
This confirms our impression that Stern-Gerlach forces are very weak. Most of the
present paper amounts to producing factors that, taken together, enhance the Stern-
Gerlach “foreground” signal (relative to the direct electric charge “background” signal)
by the 12 or so orders of magnitude basic ratio.

Table 1. Suppression and enhancement factors for a proposed test of
Stern-Gerlach polarimetry the polarized electron in the extraction line of
the CEBAF recirculating linac beam at Jefferson Lab. The Stern-Gerlach
cavity response to magnetic dipole moment µ∗e is superimposed on the
direct response due to electron charge e. This table provides factors
(either suppression or enhancement) contributing to the extraction of the
Stern-Gerlach signal. The final column points to the section containing
the primary discussion of the factor.

quantity symbol suppression/ enhancement section figure or
enhancement factor number Eq. number

physical constants µ
/
e(ec) 1.932× 10−13 m S1 Eq. (2)

resonant wave number kr 2π/λr 10.5/m S1 Eq. (3)
skew penalty P(Θ) 0.25 S7.2 FIG 2

beam energy (MeV) γ2
V

(4000/0.511)2 1.6× 107 S4 Eq. (87)
frequency sensitivity Q = f/∆f 104 104 S5.2.1 FIG 7

cavity mode suppression TE/TM 1/σΘy , 1/σAB 102 S6 FIG 4
polarization reversal 2 kHz 102 S6

Table 1 lists “suppression” factors causing the Stern-Gerlach signal to be small,
as well as enhancement factors to be employed in the extraction of the S-G signal.
The ratio of physical constants of Eq. (3) is the main suppression factor needing to be
overcome. There is also a minor suppression factor P(Θ) referred to as the penalty for
skew passage of the beam through the resonant cavity.

The largest enhancement factor is the γ2
V

factor for transverse polarization. For
1 GeV electrons, γ2

V
= 4× 106 which, multiplied by P(Θ) = 0.25, produces 2× 10−6 as

an estimated ratio of magnetic over electric excitation. Without further enhancement,
even the transverse signal remains small compared to the direct charge exitation. The
discovery that the γ2

V
factor had been erroneously included for on-axis beams is perhaps

what terminated previous investigations? The canted resonator configuration largely
restores the validity of retaining the γ2

V
factor, though reduced by penalty factor P(Θ).
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The effect of fringe fields at resonator ends has been neglected, so far. Beam
interaction with end fields is certainly capable of altering the cavity excitation. In
passage of a charge through a conventional RF cavity the end field accelerations give
only a fractionally small effect, especially if the transverse aperture dimensions are
small. As explained previously the excitations given in Eqs. (1) account for the work
done from half-way up the entrance transition into the resonator, to half-way down the
exit. What is not included is the perturbative effect of the bulging out of the fields
into the adjacent waveguides.

Unfortunately fractionally small end field acceleration in electric acceleration does
not guarantee comparably small fractional effect in end field magnetic acceleration.
This remains controversial. It has not been ruled out theoretically that there is a
powerful overall magnetic conservation law, according to which vanishing of the orbit
path integral

∫
B‖(z) dz over a range from well before to well after the cavity, would

cause the cavity excitation to vanish identically. In the skew geometry, because the
end fields are also not skew to the cavity, this integral would not, in fact, vanish. This
calculation is difficult, however, and has not yet been performed. The end field effect
will introduce a further “fringe-field” penalty function PFF whose value can be guessed
to be comparable to the body field penalty P .

1.1. Sequence of tests, starting at CEBAF. The proposed initial test of Stern-
Gerlach polarimetry at CEBAF is described in some detail in Section 6. This test is
expected to be the first in a long and ambitious plan for developing and refining S-G
polarimetry. The present section sketches out a possible sequence of developments,
more or less in order of increasing difficulty and cost.

The Stern-Gerlach excitation is weak, in absolute terms, and also weak relative to
direct excitation. Nevertheless, even under worst case assumptions, with modern signal
detection and cavity design and readout, Stern-Gerlach polarimetry can be expected,
eventually, to become practical. Once the Stern-Gerlach resonance has been successful
demonstrated in an inexpensive proof-of-principle test, its performance for polarimetry
can be greatly improved. For maximum sensitivity, Stern-Gerlach polarimeters will
use ultra-high Q superconducting resonant cavities, with strong higher mode damping,
and highly sensitive instrumentation readout. Unfortunately these developments can
be expected to be expensive and to require long development times. This is why the
most promising, least difficult test has to be identified first.

It is essential to make a plan that will lead from success to success, while minimizing
the expense and effort at each stage. A sequence of such tests is listed next, more or
less in the order from least to most ambitious.

(1) Instrumentation-free, betatron-readout, unloaded Qr test: The quick-
est possible test of the principle of Stern-Gerlach polarimetry would be com-
pletely passive, with no cavity instrumentation, nor higher mode damping,
needed whatsoever. The TE202 cavity mode, once it has rung up resonantly in
response to the Stern-Gerlach force, will have non-zero electric field component
Ey and horizontal magnetic field Bx. These fields oscillate at the Stern-Gerlach
frequency fSG and deflect the beam vertically at that frequency. Standard
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beam position monitor betatron motion detection, with frequency domain fil-
tering by spectrum analyser, can detect the betatron motion driven by the
resonant cavity with exquisite sensitivity, and with negligible beam loading of
the cavity. There is ample frequency domain selectivity to distinguish Stern-
Gerlach response from direct charge response for two reasons: the TM and
TE resonant frequencies are separated and there is a large (and controllable)
frequency difference between (harmonics of) the circulation frequency and the
magnetization frequency. Preliminary estimates indicate that the resulting
beam deflection will be detectible by scanning the spin tune slowly through
the Stern-Gerlach resonance frequency.

With Ne electrons per bunch, repetition frequency f0, resonator quality
factor Qr, the cavity excitation gain and loss for transverse polarization are
given by

P SG = f0NeP(Θ)γ2
V
µ∗eµ0H‖, and Ploss =

2πfSG

Qr

µ0H
2
‖
abd

8
. (4)

In equilibrium P SG = Ploss. Equating these expressions and solving for the
magnetic field yields equilibrium (oscillating at frequency fSG) magnetic field

B‖ = µ0H‖ =
NeQr

1016

(
f0

fSG

1016P(Θ)γ2
V
µ∗eµ0

8

2πa b d

)
. (5)

The factor 1016 has been multiplied and divided only for discussion pur-
poses, to make 1016 be a convenient tentative value for the NeQr product. A
sample numerical evaluation of the product in parenthesis yields 4 × 10−8 T.
This oscillating field applies an (approximate) deflection ∆θ ≈ B‖d/(pc/e) to
the beam. In a 1 GeV storage ring with typical beta function value of 1 m,
the resultant vertical displacement would be approximately 5 × 10−9 m for
NeQr = 1016.

According to Inoue et al.[7][8], for a 1.3 GeV electron beam with 1010e/bunch
at bunch frequency of about 1 Hz, (or, presumeably, about 104e/bunch at
1 MHz), the voltage response of a sensitive resonant beam position pick-up is
about 3µV/nm, with noise level corresponding to about 2.6 nm. According
to this crude estimate, the pick-up signal for a Stern-Gerlach test should be
detectable even with room temperature copper resonator.

The sensitivity to this form of excitation is very different in a storage ring
and a linac beam line. Because of the absence of stored beam, a linac-based
test of polarimetry would have less sensitivity to the induced verticle motion
than a storage ring test. But, in a linac, because each bunch is polarized
individually, the resonance can build up for times longer than QrTr, where
Tr = 1/fr is the resonator period. After this time a constant maximum signal
will be observable downstream. In a storage ring, the spin coherence time
(SCT) is limited by polarization decay due to decoherence. This limits the
ring-up time to be comparable to SCT which, if it is less than QrTr, limits the
polarimeter amplitude accordingly. Furthermore, once the storage ring beam
is depolarized, no Stern-Gerlach signal survives at all.
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(2) Room temperature copper cavity. The storage ring SCT limitation
is unlikely to be important for room temperature copper resonator. Because
of the relatively low value of Qr, the ring-up time will be quite short. But
the ring-up amplitude will be correspondingly small. In a linac, the ring-up
amplitude will be correspondingly small, but the Stern-Gerlach signal will
persist indefinitely, making its detection easier.

Parameters needed to compare and contrast these methods can be obtained
from Ramo, Whinnery, and Van Duzer[9]. The surface resistance of room
temperature copper is Rs = 2.61 × 10−7/

√
fr and the Q-value of our shallow

resonator is given, approximately, by

Qr(R.T. copper) ≈ π√
2

η

Rs

b

a
≈ π√

2

377

2.61× 10−7/
√
fr

b

a
, (6)

where a and b are cavity dimensions given in Figure 2(c), and η = 377 ohms
(which is the Ramo symbol for our previously-introduced free space impedance
Z0.) At GHz frequencies the storage ring SCT can be expected to be greater
than QrTr, because of the relatively small value of Qr, of order 104.

(3) Superconducting niobium cavity. Except for the vastly lower value of
Rs, for a superconducting niobium cavity the same formulas mainly apply as
have just been given for copper. But the discussion of spin coherence time in
the storage ring needs to be revised. Since the superconductor value of Qr can
be greater by at least four orders of magnitude, the resonator ring-up time
duration and peak amplitude will be greater by this same factor of 104. There
is a corresponding increase in Stern-Gerlach sensitivity. This improvement
factor applies in full for linac beam line polarimetry. But the improvement
factor in a storage ring may not be this great, because of the SCT limitation.

(4) Fully-instrumented, loaded Q, Stern-Gerlach cavity. The tests listed
so far have been “low tech” in that no instrumentation is required other than
what is automatically present in storage ring control systems. Of course ulti-
mate polarimetry performance will depend on extensive (and expensive) cryo-
genic RF design as well as sophisticated instrumentation. If and when Stern-
Gerlach resonance has been unambiguously demonstrated, sufficient funding
for ultimate precision should become easily justifiable. Any subsequent devel-
opment would be performed at a lab such as Cornell, Jefferson Lab, COSY
lab, Juelich, Germany, or ELSA lab, Bonn Germany. Significant CAD design
work for a superconducting helical coil resonant polarimeter has already been
performed by Evgeny Zaplatin at the COSY lab.

(5) Proton and deuteron EDM measurement. Another benefit of low tem-
perature operation, as important as the increased value of Qr, is the reduction
in thermal noise. For measuring the electric dipole moments of the proton or
the deuteron, the Stern-Gerlach polarimeter signal will be considerably weaker
than for electrons. The magnetic dipole moments are about three orders of
magnitude smaaller and the particles are barely relativistic. But, because res-
onant polarimetry is essential for measuring their EDMs it is important to
investigate the instrumentation sensitivity necessary for hadron Stern-Gerlach
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polarimetry to be useful. Certainly superconducting cavities are required,
both for acceptably high Q and for acceptably low thermal noise.

2. Narrowing the options

Formal theoretical development begins with Section 3: “Waveguide mode repre-
sentation by skew plane waves”. The present section surveys the motivation for reso-
nant polarimeter, and indicates some of the important issues. They include: particle
type—electron or hadron; accelerator type—linac or storage ring; beam polarization—
longitudinal or transverse; cavity mode–TM or TE, and so on. Once all these issues
have been resolved, experimental procedures, sensitivities, and backgrounds can be
addressed.

This section begins with a brief historical review of transformation properties of
magnetic dipole moments. The main result of this review is to refuse to assign any
intuitive physical properties to “magnetic dipole moment” in any frame other than the
rest frame. Its value, µ∗, is a frame-independent physical constant. Having accepted
this, it is not important to understand controversies concerning Lorentz transforma-
tion of the magnetic dipole moment, since no such transformation will figure in the
remainder of the paper. This section continues its discussion of what is not to be used,
by warning against the introduction of “magnetic potential energy” in any frame other
than the particle rest frame. Stern-Gerlach interaction between cavity and particle
is represented entirely by a standard 3-force. Rather than relying on “conservation
of mechanical plus potential energy” one can simply evaluate the work done by the
Stern-Gerlach force applied to the particle by the cavity magnetic field.

The final topic in this section is more important; it sketches the procedure that is to
be used in the remainder of the paper for calculating Stern-Gerlach cavity excitation.

2.1. Resonant polarimetry motivation. The interest in resonant polarimetry
has been driven recently by plans for measuring electric dipole moments (EDMs) of
fundamental particles, especially proton, deuteron and electron. However this paper is
restricted just to planning resonant polarimetry tests and not EDM experiments.

Calculations in this paper are purely classical, not quantum mechanical (other than
accepting that point particles can have finite magnetic moments). Bohr and others have
used the Heisenberg uncertainty principle to show that the Stern-Gerlach force cannot
be used to measure the magnetic moment of a solitary electron. To circumvent this
we discuss only coherent bunches of, say, 1010 electrons or other particles, over spin
coherence times (SCT) short enough, that the magnetic moment of the bunch is (at
least almost) equal to the sum of the individual magnetic moments.

Tests to demonstrate resonant polarimetry (for the first time) have been contem-
plated using polarized electron beams, either from a linac, such as at Jefferson Lab,
or in a circular ring such as ELSA, at Bonn, Germany. There is also the possibility
of using polarized proton or deuteron beams, for example at the COSY ring in Jülich,
Germany.

Both transverse and longitudinal polarimetry is required for EDM measurements
but, since resonant polarimetry has never been demonstrated, the immediate task is
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to determine the more promising approach. I have previously[10][11] emphasized lon-
gitudinal polarimetry, using a solenoidal resonator, and some of the references remain
attached to this paper. Recent thinking has been that it is preferable to use a conven-
tional cylindrical or rectangular resonator. It is the difficulty anticipated in developing
an unconventional superconducting cavity that leads to this recommendation.

To simplify the formulas, except for an appendix displaying cylindrical resonator
modes, this paper is restricted to rectangular resonators. This is consistent with the
conclusion already mentioned and supported later in the paper, that cylindrical res-
onators are unsatisfactory for Stern-Gerlach polarimetry. To lend concreteness, for-
mulation is based initially on the configuration shown at the top left of Figure 1,
superceded later by the configuration at the top right. Though the formulation here
is very different, up to the point where a canted resonator is introduced, the results
seem to be equivalent to those given by Conte et al., first in reference[2], then in later
papers[12][13]. The same logic that rules out cylindrical resonators also rules out con-
ventional cavity orientation in which beam line and cavity axis coincide. The cavity
selected for the first test of Stern-Gerlach polarimetry is shown at the top right of
Figure 1.

The fact that the electron’s magnetic moment is three orders of magnitude greater
than the proton’s favors starting with electrons. Electron beam tests can either be at
high, GeV-scale energies, probably using a polarized storage ring electron beam such
as the ELSA ring at Bonn or CEBAF, or at low, multi-MeV energies, in a polarized
electron injection line such as at Jefferson lab. The dependence on beam energy or,
rather, on the relativistic γ factor has been controversial. So it is essential for this issue
to be understood first.

For first demonstrating the feasibility of resonant polarimetry one wishes to identify
whether longitudinal or transverse polarimetry is more promising. To understand the
relative sensitivity it is important first to understand the Lorentz transformation of
relevant physical parameters between the laboratory frame (in which the resonator is
stationary) and the rest frame (in which the design beam particle is stationary).

Much discussion has centered on the Lorentz transformation of the “magnetic dipole
moment” (MDM). The first important point to be made in this paper is that the
magnetic dipole 3-vector is not, in fact, a relativistic covariant; so there is no meaningful
way of “Lorentz transforming” it. Vast experience, both experimental and theoretical,
has been acquired concerning MDMs in particle rest frames. But this is the only frame
in which physical intuition based on this experience can be applied. There are various
ways, in frames other than the rest frame, of introducing a parameter going by the
name “magnetic dipole moment”, but this does not permit one to extrapolate rest
frame experience to moving frames, based on the “magnetic dipole moment” name. In
short the physical interpretation of MDMs in moving frames needs careful treatment.

As just stated, non-relativistic behavior of the rest frame MD vector m0 is thor-
oughly understood and verified by vast experimental experience. Spin precession at
relativistic energies in storage rings is also well understood. But, for calculating the
excitation caused by passage of a point magnetic moment through a resonator, sta-
tionary in the laboratory, transformation between frames is necessary. Even defining
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a “laboratory magnetic moment” of a moving particle is ambiguous and ill-advised. It
is safer to analyse the interaction between particle and resonator in the rest frame of
the particle.

2.2. Why it is wrong to Lorentz transform particle MDM’s. Resonant
polarimetry was first proposed in 1993 by Derbenev[1]. An experimental test was
proposed[3] in 2001, but not performed. At that time the Lorentz transformation of
magnetization and material magnetic dipole moments (MDMs) between coordinate
frames was controversial. Some of the history is described in reference [14]. This has
now been clarified, for example by Kholmetskii, Missevitch and Yarman[17]. These
authors identify four physically different possible MDM definitions: “configurational”,
“source”, “force” and “elementary particle”. In the rest frame all four of these defini-
tions are equivalent; m0

c = m0
s = m0

f = m0
ep. The Kholmetskii et al. paper concen-

trates on just the first three of these definitions. They defer to Bargmann, Michel and
Telegdi (BMT), Jackson[18], Hagedorn[19], etc. for establishing the Lorentz transfor-
mation properies of m0

ep, which applies only to elementary point particles.
In his Section 9.6C, Hagedorn[19] discusses multiparticle systems in which individ-

ual particle magnetic moments and orbital magnetic moments contribute to magneti-
zation of macroscopic media. Before addressing transformation properties of m0

ep we
briefly review the Kholmetskii paper.

The lab frame configuration1 value mc, differs from the source and force values,
which are equal; ms = mf . The “source” value ms is needed to calculate the magnetic
fields (due to their MDMs) of the moving charges. The force value mf is needed for
calculating the force on a moving magnetized medium.

For “source” and “force” definitions, the transformation derived by Kholmetskii are

ms,f = m0
s,f −

(
1− 1

γ

)
(m0

s,f · ẑ) ẑ. (7)

As a result the transverse and longitudinal transformations are different;

ms,f
⊥ = m0

s,f
⊥ ,

ms,f
‖ =

1

γ
m0

s,f
‖ . (8)

It may seem natural to presume that the transformation of spin vector from rest frame
angular momentum 3-vector sR to laboratory frame value sL should be just like Eq. (7).
But Jackson[18] (or alternatively Hagedorn[19]) show that the spin transformation
corresponding to Eq. (7) should actually be a 4-vector transformation,

SL = (s0L, sL) =
(
γβ(x̂ · sR), sR + (γ − 1) (sR · ẑ) ẑ

)
. (9)

In deriving this transformation it has been assumed that the rest frame 4-vector is
(0, sR); i.e. the time component vanishes. To make comparison with Eq. (7) easier, we

1By the “configuration” definition the MDM is loop area times loop current, with current density
and loop dimension transformed individually. Kholmetskii et al. explain how the laboratory frame
MDM value value derived this way needs special (and quite complicated) treatment that depends on
what laboratory quantity is being calculated. In this way they recover self-consistency of “c”, “s”,
and “f” definitions.
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now revert to the notation that s0 and s are, respectively, rest frame and laboratory
frame spin 3-vectors. The factor multiplying s to produce mep is a measurable, frame-
independent, physical constant. In this notation the transformation from s0 to s is
given by

s = s0 + (γ − 1) (s0 · ẑ) ẑ. (10)

Because this is just a part of a 4-vector Lorentz transformation, it should not be
surprising that it differs from Eq. (7). Of course Eqs. (8) also change; to

s⊥ = s0⊥,

s‖ = γs0‖. (11)

One sees (especially for electrons) this makes a huge change compared to Eqs. (8) in
the relative γ dependence of transverse and longitudinal components.

This seeming ambiguity has elicited considerable discussion for more than a decade.
Here it will be shown that this whole discussion has been inappropriate. For calculating
Stern-Gerlach forces only truly covariant relativistic quantities (4-scalars, 4-vectors, 4-
tensors, etc.) should be transformed between frames.

2.3. Outline of the resonator excitation calculation. It has just been shown
that Lorentz transformation between reference frames of the “magnetic dipole vector”
m is ambiguous. In fact, none of the transformations exhibited so far will be used.
Only the rest frame magnetic moment µ∗m̂0, with magnitude |µ∗|, will enter subsequent
formulas.

We are primarily interested in calculating the “excitation” caused by the passage of
a point particle with velocity V ẑ and rest frame MDM vector m0 through a resonant
cavity of length d, that is stationary in the laboratory. This is illustrated in Figure 3.
The lower part of this figure illustrates the situation in a frame K0 which is a particle
rest frame applicable at the instant the center of the resonator passes.

To reduce ambiguity, let us specify “excitation” to mean “change in laboratory
energy stored in the resonator”. Calculating this energy change is analogous to the
well-understood calculation of the energy deposited or extracted by a charged particle
of mass mp, charge ep, velocity V ẑ, and mechanical energy Ep = γ

V
mpc

2, while passing
through an RF accelerating cavity of length d, stationary in the laboratory. As viewed
in the rest frame, the passing cavity length is d/γ

V
and time spent inside the cavity by

the particle is (d/γ
V

)/V . For a particle traveling with speed V in the laboratory, the
laboratory time interval dt and the “proper time” duration ds (the time measured by
a clock traveling with the particle) are related by

ds =
dt

γ
V

. (12)

If the 4-momentum of a particle is to change, it has to be because force has been
applied. In the laboratory (in MKS units) the time rate of change of 3-momentum p
caused by force 3-vector f is

f =
dp

dt

( e.g.
= eE + eV ×B

)
, (13)
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Figure 3. Pictorial representations of interaction between relativistic
particle and resonant cavity, as viewed both from the laboratory and from
a “mean rest frame” (the electron rest frame at the instant the electron
passes the center of the resonator). v0ẑ is the small, non-relativistic,
particle velocity of the particle in K0 frame. It illustrates the particle di-
rection reversal during the passage. The resonator velocity is unchanged
in the encounter; V r

0a = V r
0b = −V .

where the Lorentz force is given as an example of a relativistically-valid force definition.
(Among other things, demonstration of this validity uses the fact that charge e is a true
scalar invariant.) The magnetic moment µ∗ will play the same roll for Stern-Gerlach
excitation as does e for electromagnetic interaction.

The 4-force G is the (proper) time rate of change of 4-momentum P = (E/c,p),

G =
dP

ds
= γ

V

(
dE/c
dt

,
p

dt

)
= (γ

V
f ·V/c, γ

V
f)

=
(
γ
V
β
V
f‖, γV (f‖ + f⊥)

)
(14)

where the 3-vector f has been decomposed into parallel and perpendicular (to V)
components. This shows that a force cannot change the energy in any frame in which
the force is transverse. This is a well known property of the Lorentz force; a magnetic
force does not change the particle energy.

Resonant polarimetry depends on the existence in the rest frame of a “magnetic
potential energy”,

Um
0 (t0,x0) = −µ∗m̂0 ·B0(t0,x0) (15)

of a particle with magnetic moment µ∗m̂0. Unfortunately, in time-varying situations,
gauge invariance can make the transformation of electromagnetic potential ambiguous.
For example, in the absence of charge (as applies inside a waveguide or waveguide
resonator), the electric potential Φe can be made to vanish identically by choosing the
Coulomb gauge.

(Incidentally, this does not contradict the observational fact that a waveguide res-
onator can be used to accelerate particles, as one might be tempted to conclude based
on a supposed, frame-independent, “conservation law for potential energy” eΦe. Con-
sistent with such a law would be the requirement that energy change e∆Φe necessarily
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vanishes in passing from well before, to well after, an isolated RF cavity. The existence
of such a “law” for electric charge RF acceleration would contradict the existence of
RF accelerators.)

Hagedorn[19], Eq. (9.32), shows that the rest frame angle θR between the velocity
and the spin vector direction is constant for boosts parallel to the magnetic field, This
makes it possible to analyse independently the Stern-Gerlach influences of transverse
and longitudinal beam magnetization.

It is convenient to formulate the calculation with an (abundantly valid) impulsive
approximation, in which the integrated Stern-Gerlach momentum imparted to a parti-
cle passing through the resonator is small enough to justify neglecting its displacement
during the encounter. One also notes that it is only the longitudinal component of
force that can change the energy of a particle.

The laboratory frame transverse electric and magnetic fields E(x, t) and B(x, t) in
various resonant cavities, as functions of position x and time t, are given later. For
now we assume these fields are known. For our geometry, with rest frame advancing
along the positive z axis, Jackson’s Eq. (11.149) (switched to SI units) gives formulas
for the transformation from transverse laboratory electric and magnetic fields Eyŷ and
Bxx̂ to rest frame fields E0yŷ and B0xx̂;

E0 = γ
V

(Eyŷ + β
V
ẑ× cBxx̂) = γ

V
(Ey + β

V
cBx) ŷ

B0 = γ
V

(Bxx̂− βV ẑ× Eyŷ/c) = γ
V

(Bx + β
V
Ey/c) x̂. (16)

These formulas assume that the electric field is aligned with the y-axis, and the mag-
netic field with the x-axis. Transverse electric and magnetic waveguide fields are always
orthogonal, deviating from these formulas only by an azimuthal rotation of these fields
around the z-axis. In this sense Eqs. (16) are sufficiently general. We have specialized
in this way so that subsequent formulas can avoid vector operator notation.

3. Waveguide mode representation by skew plane waves

3.1. Skew plane waves. I have developed a special formalism for treating the
effect of Stern-Gerlach forces acting on a particle with magnetic dipole moment m
passing through a resonant cavity. The procedure is based on superpositions of skew
plane wave pairs, where a skew plane wave is introduced first. The idea for this
represention was obtained from the book, The Plane Wave Spectrum Representation
of Electromagnetic Fields, by P.C. Clemmons[20].

There are a few justifications for introducing an unconventional waveguide mode
formalism. For the low order, rectangular waveguide modes favored for Stern-Gerlach
cavity resonance, a total of four skew waves is sufficient to represent the cavity fields.
Rather than interacting with a formally complicated resonator mode, the beam can be
visualized as interacting with just four plane waves having coplanar wave vectors, with
the beam orbit itself lying in the common plane. Later, when a canted resonator is
introduced, since each of the four waves is already slanted relative to the beam path,
the effect of a slant of the beam path itself does not greatly complicate the picture.
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As well as reducing the complexity of the formulas this makes it natural to represent
the Stern-Gerlach force as a superposition of just four forces. This purges any tempta-
tion to introduce a “magnetic potential energy” in any frame other than the electron
rest frame. There is a further minor benefit for deriving results by an independent
formalism; formulas can be checked against results obtained by a different approach.
There is no reason to doubt that the skew wave formalism is equivalent to standard
waveguide formalism.

A “skew wave” of frequency ω, as here defined, is a plane wave propagating in
the direction of unit vector n, as shown in Figure 4. Its angle relative to the z-axis
is α and its eventual purpose is to be combined with other skew waves to produce a
waveguide mode, either TE or TM, propagating along the z-axis. As drawn in the
figure, because the electric field has no z-component, waves of this type can be used to
produce TE modes. Using notation copied from Clemmons, the vectors in the figure,

α

H

E

n

z

α
θ

n

H

E

y

x

r

Figure 4. Skew wave component for TE modes advancing toward more
positive z. Initially the faint figure on the left is to be ignored. It
represents a backward-travelling skew wave to be superimposed later to
match the electric and magnetic boundary conditions on the z = 0 plane.

are represented, for TE modes, by

n = (sinα, 0, cosα), (17)

r = (r sin θ, ry, r cos θ), (18)

n · r = r(sinα sin θ + cosα cos θ) = r cos(θ − α), (19)

E = (0,−1, 0) e−jkr cos(θ−α) E, (20)

H = (cosα, 0,− sinα) e−jkr cos(θ−α) Ẽ, (21)

where k = 2ı/λ and ω/k = c. The electric field amplitude of this wave is E. Eq. (21)
employs an unconventional treatment of units that is flagged by the presence of the
overhead tilde in symbol Ẽ. The tilde is to be taken to mean that “the units will be
sorted out later”. Appearing in Eq. (20), E has the electric field units matching E.
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But Eq. (21), seemingly “equating” a magnetic to an electric field, looks dimensionally
inconsistent, at least in MKS units. The essence of these two equations is that, for
free space EM plane waves, in the most convenient units, the magnetic and electric
field amplitudes would be the same. As written, the choice of consistent units can
be deferred. For these two equations to actually be dimensionally consistent in MKS
units, Ẽ would would have to be replaced by E/η in Eq. (21), where η is the “free
space impedance” of 377 Ohms.

A time variation exp jωt factor multiplying all fields has also been suppressed. The
wave number k is given by

k = ω
√
ε0µ0. (22)

For 0 < α < π/2 this wave is advancing toward more positive z. The skew wave phase
is definced by

φα(t, r) = ωt− k · r = ωt− kr(sinα sin θ + cosα cos θ). (23)

where k = kn. As such, for fixed α, the wave phase φα is defined throughout space-
time.

Usually what will be most relevant is the skew wave phase at the space-time location
of a particle moving with speed V , so that r = V t, along a line passing through the
origin at angle θ. The “proper phase” is the wave phase advance at the space-time
position of the particle. So φα(t, 0) = ωt is the phase of a wave, measured at the location
of a particle at rest at the origin in the laboratory. For a particle at longitudinal position
z = r cos θ, moving from the space-time origin at angle θ, the proper phase is

∆φα,θ(z) =
kz

cos θ

(
1

β
V

− cos(α− θ)
)
. (24)

The ∆ is included in the ∆φα,θ symbol to indicate that it represents the proper phase,
assuming the phase at the origin is zero.

An important property of wave phase is that it has the same value in different
reference frames. However it is only the φα,θ proper phase for which this property is
easily applied. Using this invariance, when evaluated in its own rest frame, the value
of wave phase at a particle’s position in space-time is given by φα,θ = ω0t0, where
subscript “0” indicates coordinates in the particle rest frame. This justifies referring
also to φα,θ as a proper phase, or “proper phase interval”, because the phase at the
space-time origin is assumed to be zero in all reference frames. For a particle traveling
at angle θ in the laboratory, when the longitudinal position is z = d, for example at
the exit of a cavity of length d, the proper phase is obtained by substituting z = d in
Eq. (24).

When needed, TM modes can be constructed from skew waves of the form

E = (cosα, 0,− sinα) e−jkr cos(θ−α) E, (25)

H = (0, 1, 0) e−jkr cos(θ−α)Ẽ. (26)

3.2. Skew plane wave pairs, pairs of pairs, etc. A possible skew wave to
complement the TE wave just introduced, is symmetrically on the other side of the
z axis, advancing into the positive z hemispace, as shown in Figure 5. Such a pair



3. WAVEGUIDE MODE REPRESENTATION BY SKEW PLANE WAVES 21

of waves can be used to match a boundary condition along a (perfectly conductive)
side wall of a rectangular waveguide. This wall could, for example, be in the (y, z)
plane along the z-axis. This would not be acceptable if, as we assume, there is a
beam traveling along the z-axis. But conductive walls can be situated along other
lines parallel to the (y, z) plane, but displaced from, the z-axis.
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Figure 5. On the left, a pair of TE skew waves advancing toward more
positive z. On the right, the same two waves but at a point where on-axis
electric vectors interfere constructively. These skew waves are to be used
later to produce resonator modes favorable for resonant polarimetry.

Vectors for the two waves are

n± = (± sinα, 0, cosα), (27)

r = (r sin θ, ry, r cos θ), (28)

n± · r = r cos(θ ∓ α), (29)

E± = (0,∓1, 0) e−jkr cos(θ∓α) E±, (30)

H± = (± cosα, 0,− sinα) e−jkr cos(θ∓α) Ẽ±. (31)

These two waves can either be added, H+ + H− or subtracted, H+ −H−, with cor-
responding expressions for E. Another possible superposition results by shifting the
phase of one wave relative to the other, as in H+ ± iH−. But one does not have com-
plete freedom in superimposing these fields though; in a waveguide, it is reflections
from the waveguide walls, as imposed by boundary conditions there, that make the
waves identical to what they would be in free space.
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Other skew wave pairs can be formed by azimuthal rotation around the z-axis. Ro-
tation by π/2 is equivalent to replacements x→ y, y → −x. Further superpositions are
also possible, either discrete, such as those already mentioned, or continuous, formed
by superimposing continuous azimuthal distributions. The former are appropriate for
rectangular wave guides. The latter can, presumebly, be superimposed to construct
cylindrical waveguide modes, with their Bessel function radial dependencies. Only
discrete cases will be attempted here.

Propagating waveguide fields can be visualized as plane waves being reflected from
the walls of the waveguide. With discrete superpositions it is possible to represent
forward propagation in rectangular waveguides. In general this will require at least
two pairs of skew waves, one representing horizontal reflections, the other vertical. For
circular waveguides continuous superpositions are required.

To represent resonant cavity oscillations it is necessary to employ backward trav-
eling waves. The backward waves can be visualized as being reflected by entrance and
exit, transverse, conductive planes. For a rectangular guide this will double the typical
number of skew wave pairs required, for example from four to eight. Backward waves
are easy enough to visualize but, when Lorentz transforming along the z axis, it is
necessary to treat forward and backward waves separately.

To keep the formulas simple we will concentrate first on a single skew wave, finding
the momentum impulse it imparts to a passing magnetic moment. Restricting the dis-
cussion to discrete superpositions, means we are assuming rectangular waveguides and
resonators, even though circular resonators may be used in practice. Physical intuition
suggests that behaviors of circular and rectangular guides will not differ significantly.
It is only the introduction of a canted resonator that favors rectangular over circular
resonators.

With superposition applicable, the impulses from all skew waves simply have to be
added. If all contributions were constructive the total momentum impulse would be
roughly equal to the impulse from one field multiplied by the number of fields. But,
of course, destructive interference has to be anticipated in some cases. Destructive
interference of forward and backward wave amplitudes at input and output surfaces is
what allows the boundary conditions there to be met. The eventual summing of the
momentum impulses from the individual skew wavess making up a given mode will
have to account for these coherent interferences.

3.3. Lorentz transformation of skew waves. Our skew wave fields propagate
at angle α relative to the z axis in the lab frame. We need to boost them along the z
axis, from the laboratory to the rest frame. A standing wave in the resonator is made
up of a superposition of forward/backward pairs. Though the forward and backward
propagation angles relative to the z-axis are the same in the laboratory, these angles
will be different in the particle rest frame. Lorentz transformation is therefore required
from unprimed laboratory frame coordinates, to subscript “0” variables in a frame
moving with velocity V along the positive z-axis in the laboratory.

In his Section (11.3-D), Relativistic Doppler Shift, Jackson develops the formulas
we need. The wave 4-vectors for forward and backward waves in the lab and rest
frames are K± = k(1, sinα, 0,± cosα) and K0 =k0±(1, sinα0±, 0, cosα0±). (Here I have
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introduced a special (large font) symbol α to represent an angle guaranteed to be in
the range 0 ≤ α < π/2.) These transform as true 4-vectors. For forward and backward
skew waves in the laboratory indicated by “±” subscripts, sinα+ = sinα− ≡ sinα and
cosα± = ± cosα. With ω = kc, the Lorentz transformations are

ω0± = γ
V
ω(1− β

V
cosα±), (32)

tanα0± =
sinα

γ
V

(± cosα− β
V

)
, (33)

where α is required to be in the range 0 ≤ α < π/2. For example, α = 60◦, sinα− =
sinα+ = sinα = 0.866, cosα+ = cosα = 0.5, cosα− = −0.5.

Notice, in the fully-relativistic regime where β
V
≈ 1 and γ

V
>> 1, that

tanα0± ≈ −
sinα

1∓ cosα
1

γ
V

implies α0± ≈ π − α̃0±, (34)

where we have introduced a “small” angle α̃0± for which 0 < α̃0±, << π/2. That is, in
the rest frame, not only are both waves “backward”, the backward wave deviates only
by the small α̃0± angle from the negative z-axis, and even more so with increasing γ

V
.

Over most of the possible angular range for α, the same approximation will be
valid, especially as γ

V
becomes larger and larger. For example, suppose α is changed

to α + Θ, where Θ = 30◦; that is, α = 90◦, sinα = 1, cosα = 0, then α0 ≈ π − 1/γ
V

.
Or suppose α is changed to α −Θ; that is, α = 30◦, sinα = 0.5, cosα = 0.866, then
α0 ≈ π − 3.73/γ

V
. For this numerology to be typical, α + Θ should not exceed 90◦

and α−Θ should remain greater than zero. All these approximations are quite good,
provided γ

V
is greater than, say, 30.

Under these conditions it will be legitimate to use the approximation

α̃0± = π − α0± ≈
sinα

1∓ cosα
1

γ
V

, (35)

Later it will prove advantageous to measure α relative to an axis displaced by a positive
angle Θ that can be positive, in which case the rest frame angles will be referred to as
α0±. In this case approximation (35) becomes

α̃′0± = π − α′0± ≈
sin(α± −Θ)

1∓ cos(α± −Θ)

1

γ
V

. (36)

The signs of both numerator and denominator remain unambiguous. When this ap-
proximation is valid, the following small angle approximations will also be valid;

sinα′0± ≈ α̃′0±, cosα′0± ≈ 1− (α̃′0±)2/2, and tanα′0± ≈ −α̃′0±. (37)

Greatly simplifying the task is the phase transformation

φ± = ω±t− k± · r = ω0±t0 − k0± · r0, (38)

which is the invariant scalar products of two 4-vectors. This invariance can be under-
stood to mean that the individual phases as well as being Lorentz invariant, are equal.
This is helpful in visualizing standing waves in different reference frames. Though the
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frequencies and wavelengths of the two traveling waves differ, the locations of stand-
ing wave features, such as nodes or maxima, stay matched to the same points, during
Lorentz transformation between frames.

For TE modes, since β
V
· E = 0, Jackson’s Eqs. (11.149) reduce to

E0 = γ
V

(E + β
V
×Bc),

B0 = γ
V

(B− β
V
× E/c) + (1− γ

V
) (β̂

V
·B) β̂. (39)

For our TE mode skew wave, the rest frame fields are

E0 = γ
V

(1− β
V

cosα)E, (40)

B0 = γ
V

(cosα− β
V

)Bx̂− sinαBẑ. (41)

Factors such as 1−β
V

cosα or cosα−β
V

might, in some contexts, be made frightening
by their possible near cancellation to zero. This is never a problem in our case, even
for large γ

V
, with β

V
≈ 1. In our case, since α is never excessively close to zero, cosα

is never excessively close to 1, so these factors are never excessively close to zero.
Rather than using Eq. (41) to transform the magnetic field, since we are discussing

a single plane wave in both frames, the electric and magnetic field magnitudes are
constrained. From Eq. (40) we also have

E0 = γ
V

(1− β
V

cosα)E,

B0 = γ
V

(1− β
V

cosα)B. (42)

3.4. Forward/backward wave pairs. Of the required skew wave partners needed
to construct a given TE mode, the most important is the (unique) backward skew wave
needed to match the conductive wall boundary condition at the entrance and exit faces
of the cavity. The combined forward-backward pair produces a cavity standing wave.
The laboratory length d of the cavity is equal to an integer number of laboratory
half-wavelengths of the waves. The full cavity response for any particular TE mode is
obtained by summing the appropriate forward/backward pairs. Other than the (quite
likely) possibility of exact cancellation due to symmetry, the order of magnitude of the
coherent sum can be estimated to be given by the effect of a single forward/backward
skew wave pair, multiplied by the number of such pairs making up the mode.

One has to be careful to avoid possible incorrect assumptions that have not been
considered so far. The standing waves in a resonant cavity are formed from for-
ward/backward pairs. Taking αF < π/2 as the angle of the forward wave in the
laboratory, then αB = π − αF is the angle of the backward wave; it lies in the angular
range π/2 < αB < π in the laboratory. One possible faulty assumption is that the wave
propagation angle αF is more or less arbitrary and can, perhaps, be a “small” angle.
In fact, for waves in a waveguide, α is a function of the frequency f . A typical value
for the angle α can be obtained from a typical value for the phase velocity, according
to the formula

vp =
±c√

1− f 2
c /f

2
=
±c

cosα

e.g.
= 2c, (43)

where a sample numerical value is given. Here the ± option allows for the wave
propagation to be either forward or backward, assuming the angle α is always measured
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from the positive z-axis. Assuming forward propagation, cosα = 0.5. So, at least not
far above waveguide cut-off frequency (which will be required for experimental reasons)
αF will actually be a “not-small” angle. From Eq. (43) one also obtains

cosα = ±
√

1− f 2
c /f

2, and sinα = fc/f. (44)

For frequencies only slightly above the cut-off frequency one can introduce a frequency
difference ∆f = f − fc, with ∆f > 0 being required. There is no urgent reason for
approximating these relations but, for frequencies just above cut-off,

sinα ≈ 1−∆f/fc, and cosα ≈ ±
√

2∆f/fc. (45)

When contemplating a wave pair that is forward/backward in the laboratory, one is
tempted to visualize the pair as also being forward/backward in the rest frame. This
assumption can be tested by referring to Eq. (33) and, in particular, the denominator
factor ± cosα − β

V
. When evaluated for the backward wave the factor ± cosαB − β

V

is certainly negative, since both terms are negative. For αF , this denominator factor
changes sign at an angle α given by

α = cos−1 β
V

?
≈ cos−1

(
1− 1

2γ2

)
?
≈ 1

γ
. (46)

The approximations here have been marked as questionable, since they assume fully-
relativistic conditions γ >> 1.

From what has been said, in the fully-relativistic regime, for resonator frequencies
low enough (relative to cut-off) to be practical, αF (because it is “not small”) will
certainly exceed α so, again, the denominator in Eq. (33) is negative. The conclu-
sion, for large γ

V
, is that skew waves forward in the lab will be backward in the rest

frame; contrary to casual expectation, both backward and forward waves in the lab are
backward in the rest frame.

The parameters for frozen spin electrons and protons are very different. For protons
a quite low value γ

V
= 1.25 applies, with the result that forward and backward waves

in the laboratory are also forward and backward in the rest frame. But for electrons,
because they are fully relativistic, γ

V
= 30, both waves are backward in the rest

frame. It seems safe to assume that frozen spin electron beams can be treated as
ultra-relativistic, while frozen spin proton of deuteron beams have to be treated as
only weakly-relativistic.

Over a full skew wave cycle the impulse imparted to the particle by the Stern-
Gerlach force cancels exactly. Half-cycles are the largest wave phase interval for which
the sign of the force does not change. This is the maximum impulse that can be
imparted in a single passage through the cavity. The shortest effective resonator length
has longitudinal phase advance equal to π. Odd-integer multiples of that length could
be just as effective.

3.5. Force applied to magnetic moment. Resonant polarimetry depends on
the existence, in the rest frame, of a “magnetic potential energy”,

Um
0 (t0,x0) = −µ∗m̂0 ·B0(t0,x0), (47)
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of a particle with magnetic moment µ∗m̂0 in magnetic field B0. Following Conte et
al.[2], to emphasize its relativistic invariance, the symbol µ∗ stands for the signed-
magnitude of the rest frame magnetic moment. Magnetic energy resembles electrical
potential energy. We know though, that gauge invariance can alter the physical inter-
pretation of electric potential energy in time-varying situations. For example, in the
absence of charge (as applies inside a waveguide or waveguide resonator), the electric
potential Φe can even be made to vanish identically by choosing the Coulomb gauge.
This makes it invalid to argue that, because a particle passes from zero potential en-
ergy before a cavity to zero potential energy after a cavity, that a particle cannot be
accelerated by an RF cavity. Any similar mis-application of conservation of magnetic
energy has to be avoided. In this paper I refuse to introduce a magnetic energy in any
frame other than the particle rest frame.

Like electric potential energy, magnetic energy Um
0 = −µ∗m̂0 ·B0 is certainly not a

relativistic invariant. µ∗m̂0 is just the rest frame spatial part of a true 4-vector M , and
the individual components of B0 are components of the electromagnetic tensor F µν ,
which is a true 4-tensor. It seems to be impossible to construct a non-vanishing, true
scalar invariant from M and F µν , even for Lorentz transformations specialized to be
boosts parallel to a single axis.

Another important difference between electric and magnetic potential energy is the
dependence of Um

0 on the direction of the magnetic moment vector m̂0. This depen-
dence makes it appropriate to discuss separately the longitudinal µ∗ẑ and transverse
µ∗m̂⊥ cases. Hagedorn[19], Eq. (9.32), shows that the rest frame angle θR between
the velocity and the spin vector direction is constant for boosts preserving the particle
direction. This makes it possible to analyse independently the Stern-Gerlach influences
of transverse and longitudinal beam magnetization.

For these reasons, rather than trying to assign meaning to magnetic potential energy
in frames other than the rest frame, we will first infer the rest frame force by spatial
differentiation of rest frame potential energy Um

0 . Integrating the rest frame equation
of motion will then produce a rest frame 4-momentum change caused by passage of
the magnetic moment through a resonator. Lorentz transformation will then produce
the particle’s laboratory energy change ∆E . The required change in resonator energy
is then −∆E .

It is only the longitudinal component of force that can change the energy of a
particle. A sufficiently large, accumulated transverse force, in what was initially the
rest frame, could cause the particle’s transverse momentum to deviate significantly from
zero, which could also produce a noticeable energy change in the laboratory. Neglect of
any such contribution is justified by the extreme weakness of the Stern-Gerlach force.

The motivation for establishing the skew wave decomposition has been to avoid
introducing “magnetic potential energy” in any frame other than the rest frame, where
it is given by Eq. (47). The Stern-Gerlach force is given in the rest frame by

Rm
0 = −µ∗∇

(
m̂0 ·B0). (48)

We will treat separately longitudinal magnetic moment µ∗ẑ and transverse magnetic
moment µ∗m̂⊥. Furthermore, concentrating just on resonator energy excitation, we
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will limit the discussion to the longitudinal force components;

RmTE⊥
0z = −µ∗∂(m̂0⊥ ·B0⊥)

∂z0

, R
mTE‖
0z = −µ∗

∂(m̂0‖B0‖)

∂z0

, (49)

(The “m” superscript stands for “magnetic” force, as contrasted with, shortly to be
introduced, “e” superscript standing for “electric”.) Initially we are concerned only
with particle motion along the z-axis, where θ = 0 and r = z. From Eqs. (20) and
(21), using r0 cos(θ0−α0) = z0 cosα0+y0 sinα0, the non-zero, on-axis, field components
and dot products, and derivatives of dot products, for a single skew wave, are given by

E0y = −e−jk0z0 cosα0 ejω0t0 E0, (50)

B0x = cosα0 e
−jk0z0 cosα0 ejω0t0 Ẽ0, (51)

B0z = − sinα0 e
−jk0z0 cosα0 ejω0t0 Ẽ0. (52)

m̂0‖B0‖ = − sinα0 e
−jk0z0 cosα0 ejω0t0 Ẽ0,

m̂0⊥ ·B0⊥ = cosα0 e
−jk0z0 cosα0 ejω0t0 Ẽ0,

(∂/∂z0) m̂0‖B0‖ = jk0 sinα0 cosα0 e
−jk0z0 cosα0 ejω0t0 Ẽ0.

(∂/∂z0) m̂0⊥ ·B0⊥ = −jk0 cos2 α0 e
−jk0z0 cosα0 ejω0t0 Ẽ0,

where the time factor exp jω0t0 has been restored, and all quantities are now being eval-
uated in the rest frame. Because of the multiplicity of possible wave-pair combinations,
the ± designations in previous equations are confusing and have been removed. With
all fields now regarded as applicable in the rest frame, all parameters and coordinates
have acquired “0” subscripts.

Note that, if the laboratory frame frequency ω is regarded as fixed then, like the
rest frame angle α0 and amplitude B0, the rest frame frequency ω0 depends on the
laboratory angle α. These quantities are related by Doppler effect formulas.

Though off-axis field dependence has been suppressed, the dependence on z0 has
been retained. In this form the fields can still be used to calculate on-axis Coulomb
and Lorentz forces acting on the particle charge, as well as longitudinal Stern-Gerlach
forces. But all off-axis field dependence has been suppressed by setting θ = 0, and
transverse Stern-Gerlach forces have been dropped.

Because the z0 dependence is explicit, longitudinal Stern-Gerlach forces can now be
calculated by differentiation, for both longitudinal and transverse beam polarization,
using Eqs. (49). The fields and forces at the z0 = 0 origin are then

E0y(t0, 0) = −ejω0t0 E0, (53)

B0x(t0, 0) = cosα0 e
jω0t0 B0, (54)

B0z(t0, 0) = − sinα0 e
jω0t0 B0, (55)

R
m‖TE

0z (t0, 0) = −j(µ∗B0) sinα0 cosα0 e
jω0t0ω0/c, (56)

Rm⊥TE
0z (t0, 0) = j(µ∗B0) cos2 α0 e

jω0t0ω0/c. (57)

Since we only need the time dependence at the rest frame origin, we have set z0 = 0
in these equations. Also k0 = ω0/c, and manifest dimensional consistency has been
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restored by replacing Ẽ0 by B0, which is the free space plane wave magnetic field
corresponding to E0. (In MKS units B0 = E0/c.)

For future reference we note, in passing, that the longitudinal force on a charge e
in a corresponding TM skew field would be given by

F eTM
0‖ (t0, 0) = −eE0‖ e

jω0t0 , (58)

and also that the rest frame TE forces on the MDM m and the rest frame TM forces
on electric charge e are in the following ratios:

F eTM
0‖ : R

m‖TE

0z : Rm⊥TE
0z

= −eE0‖ : −jk0(µ∗B0) sinα0 cosα0 : jk0(µ∗B0) cos2 α0. (59)

Being in the particle rest frame, these can be regarded as exact relations, valid both
relativistically or non-relativistically.

The longitudinal Stern-Gerlach force has now been put on the same footing as
conventional electromagnetic forces. There is no longer any need for magnetic potential
energy. This has achieved the main purpose for introducing skew waves. If one wishes,
one can continue to think of the factor µ∗B0 as a magnetic potential energy, but this
carries no implication that its conservation is guaranteed by any conservation law.2

The time dependences of the fields have now been reduced to the fields acting on
a polarized particle situated at the origin in the rest frame. As mentioned previously,
when the field amplitudes of other skew waves are added, the signs have to match the
particular waveguide mode being represented to produce the correct coherent sum for
that mode.

A single skew wave field, purely sinusoidal for all time, cannot cause an accumu-
lating influence on a particle. But, with a resonant cavity present, the fields interior
to the cavity are identical to the free space waves just calculated. For example, the
backward wave reflected from the conductive exit surface of the resonator interferes
with the forward wave to produce a standing wave in the cavity.

A particle is within the cavity for only a brief time interval, which limits the time
during which the force is effective. The arrival time of the particle at the cavity is
under external control. The essential requirement for resonant polarimetry will be to
cause the particle always to arrive and leave the cavity at phases optimal for extraction
of energy from the cavity to the particle or from the particle to the cavity.

We can calculate the maximum possible momentum impulse that can be admin-
istered to the particle by a skew wave during one half cycle (which is the maximum

2The comment concerning the effect of a possible magnetic potential energy conservation law is
made only for reference in later discussion of the Conte et al. resonator excitation formalism. The
issue then will be the influence of resonator end “fringe fields”. In particular there is the possibility
of exact cancellation in the fringe field regions of the excitation caused by forces in the interior of the
cavity. If the Stern-Gerlach forces and the electromagnetic forces given in Eqs. (53) through (56) can
legitimately treated on the same footing, it has implications concerning the relative contribution of
magnetic moment and charge to cavity excitation. What makes this valuable for assessing the promise
of resonant polarimetry is that there is vast experimental verification of charged particle acceleration
by RF cavities.)
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possible). Using Eq. (56) and k0c = ω0, for longitudinally polarized particle, the max-
imum rest frame momentum impulse during one half cycle is

∆p
‖max
0z c = ck0

∫ π/ω0

0

R
m‖TE

0z (t0)

k0

dt0

= −jµ∗B0 sinα0 cosα0

∫ π

0

ejω0t0d(ω0t0)

= 2µ∗B0 sinα0 cosα0. (60)

The same calculation for transverse polarization produces

∆p⊥max
0z c = −2µ∗B0 cos2 α0. (61)

It is important to note the “max” superscripts. These are maximum possible momen-
tum impulses due to a single passage through the resonator. The momentum recoil
in an electromagnetic wave cannot exceed this amount; but the actual recoil can be
much less, even zero (depending on phases). The extreme importance of this comment
is emphasized in Section 3.10.

It is important to remember that these are momentum changes, even though they
are expressed here in energy units. The overall sign is somewhat arbitrary and can
be reversed by shifting the phase by a half cycle. These are “amplitudes” for an
eventual superposition over the skew waves making up a resonator mode. As such,
their signs are significant and their contributions to the overall coherent sum can be
either constructive of destructive.

Values of µ∗ are given in Table 4, in units of eV/Tesla. Expressed in momentum
units, with B measured in Tesla, ∆p0 is therefore given in units of eV/c.

So far the calculation has been limited to the particle rest frame. In practice the
resonant cavity is fixed in the lab frame and the particle is moving through it with
relativistic speed V , as illustrated in the lower part of Figure 3. It remains, therefore,
to infer the rest frame skew waves from the lab frame skew waves.

3.6. TE201 skew wave superposition. The momentum impulses given by Eqs. (60)
and (61) apply to either of the forward or backward waves for which the forward wave
is illustrated in Figure 4. This pair of waves matches the boundary conditions for a
horizontal conductive plane perpendicular to the z-axis, but cannot match boundary
conditions on a vertical conductoring plane. Other waves are needed to match the side
walls of a waveguide. For example, the pair of waves shown in Figure 5 can match
boundary conditions on conducting planes parallel to the y, z plane. Though not yet
general enough for cylindrical waveguide, this is sufficient for rectangular resonant
cavities.

As drawn in the left of Figure 5, one sees that the electric field vanishes on the
x = 0 plane, and on a set of regularly-spaced planes parallel to that plane. On the
z-axis there is a longitudinal magnetic field B0‖. The vectors for this pair of waves are
given in Eqs. (27) through (31). As explained earlier, these waves can either be added
or subtracted.

For general rectangular waves the coherent sum is elementary but tedious. Because
of their different Lorentz transform behavior, it seems best to perform the Lorentz
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transformations wave by wave, rather than summing the skew waves and then trans-
forming. Also, since we are primarily interested in orders of magnitude for now, we
continue to accept a single skew wave as typical, though keeping in mind the possibility
of total overall destructive interference, producing exactly zero sums.

3.7. Practical parameters. For proton EDM resonant polarimetry, β
V

= 0.6
and γ

V
= 1.25 so the not-fully-relativistic formulation is appropriate. For electron

EDM resonant polarimetry, γ
V

= 30, which is relativistic enough for fully-relativistic
approximations to apply. Accepting the approximations in Eq. (46), produces α =
1/30 ≈ 0.03. For realistic waveguide modes α is clearly much greater than this. One
concludes that the fully-relativistic formulation is adequate for any relevant electron
beam polarimetry.

A consideration not mentioned so far has to do with the ratio of resonator length
d to particle bunch length σz, both being measured in the laboratory. σz is likely to
range from 1 mm to 10 mm. d is likely to range from 100 mm to 1000 mm. From these
ranges, the laboratory ratio d/σz can be expected to range from 10 to 103. Viewed
in the laboratory, σz is Lorentz contracted relative to the rest frame bunch length
σ0z; that is σ0z = γ

V
σz. On the other hand, viewed from the particle rest frame,

the resonator length is Lorentz contracted to d/γ
V

. So the ratio of bunch length to
resonator length is greater in the rest frame by a factor of γ2

V
compared to the same

ratio in the laboratory.
One of the candidate resonant polarimeter tests uses a polarized GeV electron

beam at ELSA, for which γ2
V
> 106. In this case, viewed in the particle rest frame, the

resonator length is far less than the bunch length. Curiously enough, there is nothing
wrong with this. In an introductory relativity course one encounters the “paradox” of
a pole vaulter running through a barn that is shorter than the length of the pole he is
carrying. The front door opens just in time to admit the head of the pole and the rear
door closes just after the tail enters; the pole hits neither door.

An equivalent situation routinely applies in all high energy accelerators. One can-
not, therefore, rule out the test a GeV electron test on the ground of too high γ

V
.

3.8. Resonator excitation due to passing magnetic moment. For a single
skew wave, what remains is to calculate the laboratory frame energy losses ∆E‖ and
∆E⊥ caused by the encounter of a beam particle carrying magnetic dipole moment
during a one half period time interval.

Viewed from in its pre-encounter rest frame the particle 4-momentum after the
encounter has been changed to P0 = (mpc,∆p0‖ẑ). (Rest frame kinetic energy gained
by the particle is being neglected.) The corresponding lab frame 4-momentum is P =
(γ

V
mpc + ∆E/c, , , ), where the spatial components are left blank, both because

they are not needed and because momentum imparted to the resonator is not being
accounted for. Lorentz transformation back to the lab therefore yields

γ
V
mpc

2 + ∆E = γ
V

(mpc
2 + β

V
∆p0‖c), or ∆E = γ

V
β
V

∆p0‖c. (62)

This treatment has employed an impulse approximation, which presumes ∆p‖ << p‖,
which is an overwhelmingly valid approximation in our case.
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Applying this formula to the momentum changes obtained in Eqs. (60) and (61),
for one hundred percent perpendicular or parallel polarization

∆Emax
‖ = 2γ

V
β
V
µ∗B0 sinα0 cosα0, (63)

∆Emax
⊥ = 2γ

V
β
V
µ∗B0 cos2 α0, (64)

(65)

Here “max” means maximum in absolute value. Also, as has been stated repeatedly,
these are the contributions from just one skew wave. The full effect requires a coherent
summation over all pairs of skew waves forming the cavity mode.

These quantities still need to be expressed in terms of laboratory variables, using
relativistic Doppler shift formulas (33). An especially simple, yet exact, transformation
applies for the parallel/perpendicular energy ratio;

∆Emax
‖

∆Emax
⊥

=
sinα0

cosα0

= tanα0 =
sinα

γ
V

(cosα− β
V

)
. (66)

As explained earlier, this transformation is qualitatively different in the fully-relativistic
and weakly-relativistic cases. We consider the fully relativistic case first.

3.8.1. Fully-relativistic case. Repeating Eq. (66) produces

∆Emax
‖

∆Emax
⊥

∣∣∣
±

=
sinα

γ
V

(cosα± − βV )
=

fc/f

γ
V

(±
√

1− f 2
c /f

2 − β
V

)
, (67)

where the “±” refers to forward/backward and, this time, Eqs. (44) have been used
to express the skew wave trig functions in terms of waveguide parameters. It is the
negative sign option in the replacement of cosα in the final equation that is specific to
the not-very/very relativistic distinction3. Since the angle α always lies in the range
0 < α < π, sinα is always positive. The sign of cosα, on the other hand, reverses
from positive to negative as α increases through π/2, causing cosα to be positive
for forward waves and negative for backward waves. Confirming previous discussion,
because the denominator is always negative in the fully-relativistic case, both forward
and backward waves in a laboratory waveguide are backward in the rest frame of a
beam particle. Setting β

V
= 1, and using approximations (45),

∆Emax
‖

∆Emax
⊥

∣∣∣
±

=
sinα

γ
V

(cosα± − βV )
≈ 1−∆f/fc

γ
V

(±
√

2∆f/fc − 1)
≈ − 1

γ
V

. (68)

Though expressed in the last equation as approximations, the ratios expressed in the
first equation are exact. This ratio gives transverse polarimetry an unambiguous γ

V

magnitude advantage relative to longitudinal polarimetry.

3It has been shown, for realistic waveguide parameters, that the denominator expression in Eq. (67)
is not particularly singular; the square term can only be close to 1 for frequencies that would, exper-
imentally, be impractically high. In any case, the negative sign of the cosα term makes the overall
denominator factor unambiguously negative, excluding any possibility of singularity. But, if β is not
close to 1 (as in the not-very-relativistic regime) then the denominator could be singular, greatly al-
tering the ratio of transverse to longitudinal response. This makes relevant the discussion associated
with the space-time behavior of forward and backward waves illustrated in Figure ??.
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To complete the transformation to laboratory parameters, noting from Figure 4
that B0z = −B0 sinα0, and using the fact that B‖ is invariant,

Bz = B0z = −B0 sinα0. (69)

can be used. Also (in fully-relativistic approximation)

cosα0± = −

√
1

1 + tan2 α0±
, (70)

showing that both cosα0± values are negative (as has been explained previously).
Substituting from Eq. (69) into Eqs. (63) and (64) yields

∆E‖ = −2γ
V
β
V
µ∗Bz cosα0 ≈ 2γ

V
β
V
µ∗Bz,

∆E⊥ = −2γ
V
β
V

µ∗Bz

sinα0

cos2 α0 ≈ 2γ
V
β
V
µ∗Bz

−1

sinα0

, (71)

The “max” superscripts have been removed since Bz varies sinusoidally. The only
remaining rest frame quantity can be replaced using the upper-sign version of Eq. (32)

−1

sinα0

≈ −1

tanα0

≈ γ
V

(1− cosα)

sinα
, where 0 < α < π/2. (72)

At this point we can refer back to Figure 4, and to the faint construction on the
negative z part of the plot. As drawn, the origin can, if we wish, be interpreted as
being located at the entrance to the cavity. Relative to the origin the waves are anti-
symmetric and the the electric fields of the forward and backward-going waves cancel
exactly at the origin. This is consistent with the z = 0 plane being perfectly conductive,
which is consistent with this being the entrance to the cavity.

By the same reasoning the origin of the drawing can be interpreted as coinciding
with the cavity exit surface. By sliding the faint part of Figure 4 to the right along the
z-axis, and the bold part symmetrically to the left, one can produce various superposi-
tions of forward and backward skew waves. For a discrete set of these translations the
boundary conditions can be met on both the entrance and exit surfaces of the cavity.
In the TEmnp resonant mode designation scheme, say with m = 2 and n = 0, the only
essential distinction among these mode is whether p is odd, as in TE201 or even, as in
TE202.

As one counter-slides the figures longtudinally, one produces, first, TE201, then
TE202, then TE203, and so on. Figure 4 can, with the origin in the figure interpreted as
being at the cavity center, corresponds to p = 21. It was already shown, in Figure 5,
how waveguide modes with different values of mode index m can be produced by
superimposing skew wave pairs with opposite-sign α values. These comments can be
correlated with the field patterns in Figure 8. In general the resonator width a and
depth d need not be rationally related, but we assume that a and d are either equal or
their ratio is a small integer.

It is shown in what follows, especially in Section 3.10, for on-axis passage of a
polarized beam through such a resonant rectangular cavity, that no net work is done
on, or by, the cavity electromagnetic field acting on beam particle magnetic moments.
(It is not difficult to conclude this, based on careful interpretation of Eq. (71).) Such a
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configuration cannot therefore serve for Stern-Gerlach polarimetry. To overcome this
impediment, slanted beam passage through the cavity is analysed starting in Section 4.

3.9. Comparison with previous formulations. These formulas for ∆Emax
⊥ and

∆Emax
‖ can be compared to formulas for (roughly) the same quantities due to Conte

et al.[2]. There is agreement as regards the major factors, γ2
V
µ∗B‖ for perpendicular

polarization, and γ
V
µ∗B‖ for parallel polarization. The remaining factors depend on

geometric parameters and except for the possibility of exact destructive interference, are
dimensionless with numerical values of order 1. For estimating polarimeter performance
this is sufficient agreement.

It is shown in this paper, however, that there is, indeed, exact destructive interfer-
ence, which causes the Conte et al. calculation to be incorrect. This is not original,
however; it was already pointed out by Tschalaer. There has been a confusing back-
and-forth of communications, starting in 2008 with Tschalaer[4][5], having to do with
the γ

V
and polarization dependence of the energy dumped in a resonant cavity by the

passage through it of a longitudinally polarized beam. This discussion has been super-
imposed on an ongoing fog of confusion, in (mercifully) unpublished reports, concerning
the Lorentz transformation of the magnetic dipole moment 3-vector (a transformation
which has been argued here to be meaningless). Also at issue is the effect of end fields
on cavity excitation.

Conte paper[12] had (in agreement with Eq. (66)) argued that cavity excitation by
transverse polarization is greater than by longitudinal polarization by one power of γ

V
,

and proposing, therefore, to greatly enhance their Stern-Gerlach effect by intentionally
introducing rapid precession of the polarization. Tschalaer showed this to be incor-
rect; Conte et al. had argued that a certain cancelation did not exist. Tschalaer had
disagreed, showing (consistent with my explanation in Section 1) that the same cance-
lation applied for both transverse and longitudinal excitation. My attitudes concerning
this controversy are scattered through this paper.

The confusion had been compounded by ambiguity concerning the effect of RF
phase advance between particle entry and exit on the cancelation of terms. Later, in
2009, Conte et al.[13] argued that the cancelation in question had been an artifact
of their originally incorrect assumption concerning the above-mentioned RF phase ad-
vance. In effect this re-affirmed their confidence in their original paper[2] (in which
discussion of the phase advance is, at best, obscure).

My results agree with Conte, as regards ratio of transverse to longitudinal excita-
tion, but with Tschalaer as regards the dependence on γ

V
or, more accurately, on the

absence a γ2
V

enhancement of the ∆Emax
⊥ excitation by on-axis propagation through

any cavity.
The situation remains murky for another, more fundamental, reason. The eventual

discussions by both Conte et al, and Tschalaer seem to depend on conservation of
magnetic energy to calculate the cavity excitation occurring in end fields. Whether
any such conservation exists remains at issue.

3.10. Why on-axis cavity beamline orientation cannot succeed. The need
for canted resonator is explained in greater detail in this section, which shows why
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normal cavity entrance and exit cannot produce Stern-Gerlach cavity excitation. The
normal insertion of a rectangular resonator into a beamline is shown top left in Fig-
ure 1. Here “normal” is used with two meanings: “expected” and “at right angles”. It
is the configuration first proposed by Conte et al. for Stern-Gerlach resonance detec-
tion. As mentioned earlier, Tschalaer[4] disputed the Conte analysis, by demonstrating
cancellation to leading order, of the Stern-Gerlach cavity excitation in this configura-
tion. Though this issue has remained controversial for years, the Tschalaer contention
seems, by now, to have been accepted.

Much of the discussion on this issue has centered on the influence of “end fields” at
cavity entrance and exit, with some demonstrations of the exact cancellation depending
on the contributions from the fringe fields. This is somewhat curious in that the cavity
aperture can, in principle, be almost infinitesimally small, which might seem to make
end fields negligible (as is usually the case with the electric force of cavity fields acting
on a passing charge). End fields forces on a magnetic dipole cannot be dismissed
so easily though, since the end field forces are large enough to cause energy changes
comparable with energy changes in the cavity interior.

Classic Stern-Gerlach force demonstration exhibits transverse separation in a non-
uniform DC magnetic field, depending on particle magnetic moment orientation. There
is no reason why the DC magnetic field cannot be replaced by a non-uniform RF field
to achieve the same separation. It is well known, though, that a transverse force
cannot change particle energy. So the RF cavity excitation is not altered by transverse
Stern-Gerlach forces.

Only longitudinal force can alter particle energy. There is, however, also a lon-
gitudinal Stern-Gerlach force. Equations (59) gives both longitudinal and transverse
magnetic dipole response in TE modes. The maximum cavity excitation caused by
transverse polarization is given by Eq. (61). The meaning and importance of “maxi-
mum” is explained there. The actual cavity excitation is necessarily less than this. In
fact it will now be shown, for normal entry and exit, that the excitation necessarily
vanishes.

It is convenient to discuss cavity excitation in the frame of reference illustrated in
the lower part of Figure 3. It is the particle rest frame at the instant the particle passes
the center of the cavity. The reason this frame is convenient is that the particle speed
is non-relativistic and non-relativistic formulation is valid. The longitudinal force on
a magnetic dipole is proportional to the (longitudinal) derivative of the longitudinal
magnetic field.

Consider a plot of B0‖(z0) versus z0 as a particle proceeds from entry to exit in
the standing wave cavity field. Boundary conditions at entry and exit require B0‖
to vanish at both ends. In the simplest case B0‖(z0) will increase from zero to some
extreme value at z0 = 0, and fall symmetrically back to zero at the exit. Meanwhile
the particle speed is changing. In fact the origin will be a “turning point” at which the
speed vanishes and the orbit reflects. On the graph the deceleration phase retraces the
acceleration phase. Because the particle speed is changing, the plot of B0‖(z0) versus
z0 is not exactly sinusoidal. In the simplest case it will resemble the first quarter period
of a sine function.
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Because the force is proportional to dB0‖/dz, the work done in traveling a distance
dz is proportional to the change in B0‖ after distance dz. This is the basis for referring
to −µ∗B0‖(z0) as potential energy. For the complete transit,

∆B0‖ =

∫
dB0‖

dz
dz = Bexit

0‖ −B
entry
0‖ . (73)

Whatever work is done while B‖ is increasing is cancelled as B‖ decreases back to zero.
There is also work done in the end fields of the cavity. It is not clear whether the work
done on entry contributes to cavity energy but, even if it does, it is exactly cancelled
by work done on exit.

For normal entry and exit of a magnetic dipole at nodes of the longitudinal magnetic
field, boundary conditions require the separate terms in Eq. (73). each to vanish,
which guarantees the field does no work on the particle. There is no such suppression
of the work done on an electric charge passing through the electric field in an RF
cavity. The work done in this case is proportional to

∫
dz E0‖, The entry and exit

boundary conditions do not require E0‖ to vanish. The integral corresponding to
Eq. (73), with B0‖ replaced by E0‖, is not required to vanish, which makes particle
acceleration possible.

Not only is the longitudinal electric field not zero on the entrance and exit faces, it
is potentially maximal (though oscillatory). Judiciously entering when the electric field
is maximal of one sign, and leaving when the sign is opposite, maximizes the cavity
excitation. This is the basis for most RF acceleration.

One has well developed intuition concerning electric potential energy. Its derivative
is electric field. What makes magnetic potential energy confusing is the the magnetic
field itself (rather than its integral) that is the potential energy.

Resonant cavity magnetic dipole response is therefore disadvantaged, relative to
electric, by the boundary condition on entrance and exit faces or the resonator. The
boundary condition for electric field is that the electric field has to be normal to the
face. The boundary condition for magnetic field is that the magnetic field has to be
parallel to the face. In standing wave terminology, the entrance and exit faces have to
be nodes of the longitudinal magnetic field. At a node the field vanishes at all times,
not just periodically. In particular, the longitudinal magnetic field component vanishes
both on particle entry and exit.

Recapitulating, the proper phase interval constraint imposed by entry and exit
boundary conditions guarantees zero momentum recoil in the particle rest frame. as
a particle moves from entry to exit, it accelerates during the entry half-transit, and
decelerates symmetrical during the exit half-transit. There is no net recoil. This is the
opposite of “maximum” interaction. The net cavity excitation by on-axis passage of a
magnetic moment through a resonant cavity is therefore guaranteed to vanish.

4. Excitation of canted Stern-Gerlach resonator

4.1. Magnetic dipole interaction with individual skew waves. We have to
find the work done by a magnetic moment passing through the cavity at slant angle Θ
(which is positive by definition). Figure 6 illustrates the four skew wave components
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of TE20 modes in both the laboratory frame and the rest frame. These waves are
identified by 1©, 2©, 3©, 4©. To help keep track of the signs of the four rest frame and
laboratory angles α0,i and αi, i = 1, 2, 3, 4, which are positive for CCW rotations and
negative for CW rotations, we introduce an angle α which is also positive by definition;
α is represented by a large font in Figure 6 (rendering the letter at more or less the
same size as Θ).
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Figure 6. Geometry for four skew waves in TE202 resonator, canted
by angle Θ = 26.57◦, with forward and backward laboratory skew wave
angles ±45◦. The mode field is constructed from the four skew waves
shown. Parameters are given in Table 2. The middle figure is a rest
frame snapshot at t0 = 0. Though square in the laboratory, the cavity is
a parallelogram in the rest frame. The right hand figure shows the four
corners at a slightly later time to indicate the four wave vector directions
which are positive for CCW rotations and negative for CW. Large font
quantities α and Θ are positive by definition.

Rest frame forces due to direct beam charge in TM modes, and to longitudinal
and transverse magnetic dipole moment vectors have been determined (for on-axis
traversal) in Section 3.5. We now repeat the calculation, assuming this time that the
beam is slanted by angle Θ relative to the resonator axis. In the laboratory frame, for
a skew wave with angle α relative to the cavity axis, angle α′ relative to the particle
path is given by

α′ = α−Θ. (74)

Previously-derived rest frame force formulas can now be employed with α0 → α′0.
The rest frame angle α′0 corresponding to laboratory angle α′ has to be found using a
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relativistic Doppler shift formula. Copying from Eq. (59), for a skew wave at angle α′0
in the rest frame, the forces are:

F eTM
0z′ : R

m‖TE

0z′ : Rm⊥TE
0z′

= −eE ′0z′ ejω
′
0t0 : −jk′0(µ∗B′0) sinα′0 cosα′0 e

jω′0t0 : jk′0(µ∗B′0) cos2 α′0 e
jω′0t0 . (75)

Lorentz transformation from laboratory to rest frame is illustrated in Figure 6. For
the sake of concreteness and definiteness, especially as regards signs, we use definite
numerical values Θ = 26.57◦. Numerical values for this example are tabulated in
Table 2 and Table 3. Subscript “0” signifies rest frame, and primes indicate skew path
through the resonator. The canted geometry affects this transformation significantly.

The directions of the four skew waves in the rest frame are designated as α′0,i, i =
1, 2, 3, 4; and similarly for ω′0,i, k

′
0,i, B

′
0,i, E

′
0,i and the force components. From Eqs. (33)

and (69) we have

ω′0,i = γ
V
ω(1− β

V
cosα′i) ≈ γ

V
ω(1− cosα′i), (76)

k′0,i = γ
V
k(1− β

V
cosα′i) ≈ γ

V
k(1− cosα′i), (77)

α′0,i ≈ tanα′0,i = − sinα′i
γ
V

(β
V
− cosα′i)

≈ − sinα′i
γ
V

(1− cosα′i)
, (78)

B′0 = γ
V

(1− β
V

cosα′i)B ≈ γ
V

(1− cosα′i)B. (79)

For the appoximate versions here we are assuming that γ
V
>> 1, so β

V
≈ 1, and that

α′i is not close to zero or to ±π. As a result the (1 − cosα′i) approximations respect
the signs of the quantities they replace.

In the rest frame, at position z0 = 0, the wave phases depend only on time, φ′0,i =
ω′0t0. The entrance to exit proper phases, divided by 2, are

∆φ0,i

2
=
ω′0,i
(
t0(exit)− t0(entry)

)
2

. (80)

φ′0,i is referred to as “proper phase advance” because the particle is physically present
at both start and end of the time interval in question.

To convert from force to momentum impulse requires the integration over time of
these forces. The required integral is

c

∫
ejω

′
0,it0 dt0 =

c

ω′0,i

∫ exit

entry

(cosω′0,it
′
0 + j sinω′0,it

′
0) d(ω0,it

′
0) =

2

k′0,i

∫ exit

0

cosφ′0,i dφ
′
0,i.

(81)
For transverse polarization, integrating the third of Eqs. (75),

c∆pm⊥TE0z′ = j(µ∗B′0) cos2 α′0 2

∫ exit

0

cosφ′0,i dφ
′
0,i

= j(µ∗B′0) cos2 α′0 2 sin
∆φ0,i

2
, (82)

and the other two terms in Eqs. (75) can be processed the same way. The laboratory
cavity excitation strengths can then be obtained using Eq. (62); multiplying all expres-
sions in Eq. (75) by the factor γ

V
β
V

converts from rest frame momentum to laboratory
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energy excitations;

∆EeTMi,z′ = γ
V
β
V

−eE ′0z′
k′0

2 sin
∆φ0,i

2
,

∆Em‖TEi,z′ = −jγ
V
β
V

(µ∗B′0) sinα′0 cosα′0 2 sin
∆φ0,i

2
,

∆Em⊥TEi,z′ = jγ
V
β
V

(µ∗B′0) cos2 α′0 2 sin
∆φ0,i

2
. (83)

Because wave phases are invariant from frame to frame, the phase advances ∆φ0,i are
the same in lab and rest frames, but this does not mean they are the same for the four
skew waves; that is, ∆φ0,i depends on i. For each value of “i”, ∆φ0,i can be replaced by
∆φi and evaluated in the laboratory. The evaluation of ∆φi was explained in Section 3
as skew waves were first being introduced.

Table 2. Skew wave geometry of the four skew waves forming the TE202

mode, for which α = 45◦. Unprimed variables are measured relative to
the cavity axis, primed variables are measured relative to the beam orbit,
which passes through the cavity at slant angle Θ = 26.57◦. The rest
frame angles α′0 are obtained using the final approximation of Eq. (78).
The laboratory wave number k has a numerical value of order 10 m−1.
Large font quantities α and Θ are positive by definition.

ray α α′ α′ sinα′ cosα′ 1− cosα′ α′0
− sinα′

γ
V

(1−cosα′)

number degree degree radian

1 45 α′1 = α−Θ 18.43 .3162 .9487 0.05132 -6.16228/γV

2 -45 α′2 = −α−Θ -71.57 -.9487 .3162 0.68377 1.38743/γV

3 135 α′3 = π −α−Θ 108.43 .9487 -.3162 1.31623 -0.72076/γV

4 -135 α′4 = −π +α−Θ -161.57 -.3162 -.9487 1.94868 0.16228/γV

Table 3. Continuation of Table 2 The “amplitude(i)” entries in the

final column are values of the coefficient (1− cosα′i) 2 sin
(
π√
2

1−cosα′i
cos θ

)
in

Eq. (87). As signed amplitudes, their sum gives the coefficient of the
overall cavity excitation.

ray α α′0 1− cosα′ ∆φ0/2 k′0 B′0 amplitude(i)

sin

(
π√
2

1−cosα′

cos θ

)
number degree radian 1/m

1 45 -6.16228/γV 0.05132 0.12711 51.317 k 51.317B 0.01305
2 -45 1.38743/γV 0.68377 0.9919 683.77 k 683.77B 1.35645
3 135 -0.72076/γV 1.31623 -0.12711 1316.2 k 1316.2B -.33461
4 -135 0.16228/γV 1.94868 -0.9919 1948.7 k 1948.7B -3.86576

sum -2.83086

(The entries in Table 3 show that there is a sense in which it is most “natural” to
treat skew waves 1 and 3 as one pair, and 2 and 4 as the other. Except for sign, the
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proper phase intervals of 1 and 3 are the same. Similarly, the proper phase intervals of 2
and 4 are equal and opposite. This should probably be considered to be a coincidence,
however. We have assumed that resonator width and depth are the same (or in the
ratio of small integers). This is why the four skew wave angles are multiples of 45
degrees. But the symmetry of proper phase intervals depends on our choice of angle Θ
(such that tan Θ = 1/2) which was somewhat arbitrary.)

Containing quantities in both rest frame and laboratory frame, Eqs. (83) are in a
kind of hybrid form. The rest frame quantities B′0 and α′0 need to be expressed in terms
of lab frame quantities using Eqs. (76) through (79). Numerical values for the TE202

mode example are given in Table 2 and Table 3. According to Eq. (24), the proper
phase interval from particle passage through the midpoint of the cavity to its exit is
given by

∆φα,θ(d/2) =
kd/2

cos θ

(
1

β
V

− cos(α− θ)
)
≈ kd/2

cos θ

(
1

β
V

− cosα′
)

(84)

For our numerical example, λ =
√

2d, so kd/2 = π/
√

2. In fully relativistic approxi-
mation, using cosα′0 ≈ 1, and approximating sinα′0 using Eq. (78),

∆EeTMi,z′ ≈ β
V

−eE ′0z′
k(1− cosα′i)

2 sin

(
π√
2

1− cosα′i
cos θ

)
, (85)

∆Em‖TEi,z′ ≈ jγ
V
β
V
µ∗B sinα′i 2 sin

(
π√
2

1− cosα′i
cos θ

)
, (86)

∆Em⊥TEi,z′ ≈ jγ2
V
β
V
µ∗B(1− cosα′i) 2 sin

(
π√
2

1− cosα′i
cos θ

)
. (87)

For transverse beam polarization, the coefficient in the sum over the four skew waves,∑4
i=1 ∆Em⊥TEi,z′ = −2.83 is given in the last row of the table. This coefficient multiplies

the jγ2
V
β
V
µ∗B factor in Eq. (87). The individual numerical values in the last row of

the table can be compared with the coefficient “2” in the second of Eqs. (71), which
was the result of a less detailed, approximate calculation.

The estimate of the direct background due to electric charge excitation remains
incomplete in that expressing E ′0z′ in lab frame quantities has not yet been performed.
If E′0 were purely longitudinal then E ′0z = E ′‖ but, with the resonator being canted,
there is a substantial transverse electric component. Fortunately only rough estimates
of ∆EeTMi,z′ values are needed.

These equations differ from Eqs. (59) primarily because they allow angles α′ to be
measured from a “primed axis” which deviates from the resonator axis by an angle Θ.
Furthermore, integration over realistic (rather than maximal) phase interval has been
performed.

The magnetic dipole vector components are now referred to the slanted beam path.
In particular, the primed axes do not align with the entrance and exit planes of the
resonator. Of course this was the entire motivation for introducing the slanted axis.
Fixed standing wave nodes are still guaranteed on entrance and exit for magnetic field
normal to the surfaces, but the surfaces are anti-nodes for magnetic field parallel to
the surfaces, which now have non-zero components along the beam direction.
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4.2. Dominant single skew wave approximation? For any of the TE20p series
of resonator modes the cavity excitation is the superposition of the amplitudes from
just the four skew waves analysed in this paper. These skew waves are represented by
the wave vectors shown in Figure 6. The beam path is along the z-axis but the cavity
is slanted by angle Θ. For an on-axis beam the four waves would consist of left/right
symmetric pairs of forward/backward pairs of skew waves. Lorentz transformation
spoils the forward/backward symmetry but preserves left/right symmetry. Slanted
beam passage through the resonator also spoils the left/right symmetry. This makes
it possible that just one of the four skew waves might dominate the Stern-Gerlach
resonator excitation. This would be especially attractive for preliminary planning pur-
poses, because the possibility of near-perfect destructive interference hazard would be,
because semi-quantitative accuracy is all that is being sought, and because simplicity
is reassuring. One sees, from Table 3, that skew wave 4 is dominant in this sense.

5. Resonator for Stern-Gerlach polarimetry test

5.1. Rectangular resonant cavities. Most of this section is drawn from Ramo,
Whinnery, and Van Duzer[9]. Cylindrical TE11 modes were, for a while, the favored
resonator type for resonant polarimetry. However, for reasons of symplicity, only rect-
angular resonator excitation has been analysed in this paper. By referring to the mode
patterns shown in Figures 8 and 11 one can see that (for on-axis beams) the rectangular
TE20 mode quite closely resembles the cylindrical TE11 mode—even if the subscripts
suggest otherwise. This led to the experimental configuration shown in Figure 1. The
beam enters the cavity at right angles to the cavity. This has been referred to previously
as “normal” entry and exit.

As explained in this paper, normal entry geometry has now been ruled out. It has
been shown, for on-axis passage, no energy can be coupled from polarized beam to
cavity. The way I propose to overcome this impediment is shown at the top right of
Figure 1. The beam travels somewhat diagonally across the cavity, at angle Θ relative
to the z-axis. For now I consider the canted-TE20 sequence of resonators of increasing
length, as the most promising choices for Stern-Gerlach polarimetry. For most of this
section the proposed slanted beam path through the resonator is not important. None
of the cavity properties will depend on the cant angle Θ.

Earlier explanations of constructing waveguide modes from skew waves have been
aimed toward producing TE10 and TE20 rectangular modes. The field patterns for
these modes are shown in Figure 8, and the forward skew wave pairs are shown in
Figure 5: TE10 on the left; TE20 on the right. The same two skew waves can form
either mode, depending on the placement of the waveguide walls; or, equivalently, with
different placement of the z-axis. (A vertical conducting plane along the z-axis of the
TE20, in effect, produces two TE10 guides, parallel-connectd, side-by-side. It may take
a while staring at the figures for these statements to be understandible.)

The TE10 mode has vanishing longitudinal magnetic field on-axis, which is not
satisfactory for our purposes. However, the TE20 mode has non-zero longitudinal
magnetic field on axis. This mode also has transverse electric and magnetic fields
on-axis. Though not helpful for resonance excitation, it has been shown earlier that
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the presence of these fields can help to solve another knotty problem—how to read out
the resonator excitation. The suggested answer is “by sensing the betatron excitation
caused by the mode excitation”.

One is always reluctant to build a high Q resonator into a accelerator vacuum
chamber. It threatens to “blow the impedance budget”. If this cannot be avoided the
peak current will be limited. But, as well as being optimized for MDM sensitive, the
proposed cavity is designed to not couple directly to the beam charge. It should also
be somewhat helpful that the beam line vacuum chamber and resonator heights have
been chosen equal in Figure 1.

There are good reasons for the rectangular resonator to be so much wider than it
is high. In the ideal situation the lowest resonator TE mode is below cut-off in the
ring vacuum chamber and the lowest resonator TM mode is above cut-off in the ring
vacuum chamber. The resonator TE mode can then have high Q, while any insipient
TM mode excitation by the beam charge is rapidly damped by leakage into the rest of
the ring vacuum chamber.

Cut-off frequencies for both TEmn and TEmn rectangular waveguides are given by

fc(m,n) =
c

2

√
m2

a2
+
n2

b2
. (88)

For example,

fc(TEm0) =
cm

2a
, fc(TM11) =

c
√

1 + a2/b2

2a
,
fc(TEm0)

fc(TM11)
=

m√
1 + a2/b2

. (89)

Notice that for TM modes, neither m nor n can be zero. This prejudices the lowest TM
cut-off frequencies to be larger than TE cut-off frequencies. (For fixed a and b) there
is a penalty (proportionally in increased cut-off frequency) for TE mode, of increasing
m from 1 to 2. But there can be a more than compensating increase in TM frequency
proportional to

√
1 + a2/b2 of increasing the a/b ratio. By increasing the resonator

width to height ratio to 4, the TE20 resonator shown in Figure 1 has lower cut-off
frequency than the lowest TM mode. (Trying to visualize these modes as lumped LC
circuits, reducing beam height b increases capacity C more or less inversely for a TE
mode, tending to reduce its resonant frequency. But there is a less than proportional
increase in inductance L resulting from increasing the beam width a.)

It is this calculation, along with matching the resonator height to the connecting
waveguide height, that fixes the transverse resonator dimensions. If necessary, d can be
increased to further desensitize against direct beam charge excitation. The cut-off fre-
quencies can be scaled up or down by changing all transverse dimensions inversely.The
resonator length is fixed by the choice of f/fc.

5.2. Stern-Gerlach signal induced in square pancake-shaped resonator.
According to page 545 of Ramo et al.[9], the quality factor of a flat (b << a) square
(a = d) cavity is given by

Qsq.p. ≈
πη

4Rs

2
√

2
b

a
≈ 0.28

η

Rs

√
10

fr[GHz]
, (90)
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where η = 377 ohm and, for room temperature copper, at 10 GHz, the surface resistance
is Rs = 0.0261 ohm at 10 GHz. For the b/a = 0.125 cavity dimensions shown in
Figure 1, QCu

sq.p. = 4010. (For different resonant frequency fr the Q value scales as

1/
√
fr). For peak vertical electric field E0 the electromagnetic energy stored in the

cavity is given by

Usq.p. =
abdµ0

8
H2
‖ ,

[
Jm2

A2

][
A2

m2

]
. (91)

(The units of H‖ are [A/m].) For the present calculation we suppose that the cavity is
being externally driven, with power P ext at exactly the cavity resonant frequency fr.
The quantities introduced so far are related by

P ext =
ωrUsq.p.

Qsq.p.

=
2πfr µ0H

2
‖

Qsq.p.

abd

8
. (92)

This equation can be re-arranged to express H‖ in terms of the P ext;

H‖ =

√
Qsq.p.

2πfr

8

abdµ0

1

P ext
P ext,

√
[s]

[
A2

Jm2

][
s

J

] [
J

s

]
, (93)

where
√
P ext has been multiplied and divided for convenience in the next step.

Consider a one hundred percent (transversely) polarized bunched electron beam

with beam current Ie
e.g.
= 10−4 A, and repetition rate f0

e.g.
= 0.5× 109 Hz. The number

of electrons per bunch is

Ne =
Ie
eNe

e.g.
=

10−4

(0.5× 109) · (1.6× 10−19)
= 1.25× 106 electrons/bunch. (94)

According to Eq. (4) the passage of transversely polarized electrons also supplies power
to the cavity. The power is

P SG = f0NeP(Θ)γ2
V
µ∗eµ0H‖;

[
1

s

][
J

T

][
T ·m

A

][
A

m

]
. (95)

where P (Θ) is a “penalty function” whose value is less than 1. Substituting from
Eq. (93) into this equation, and dividing by P ext produces

P SG

P ext
= f0NeP(Θ)γ2

V
µ∗e µ0

√
Qsq.p.

2πfr

8

abdµ0

1

P ext
,

[
1

s

][
J

T

][
T ·m

A

]√
[s]

[
A2

Jm2

][
s

J

]
.

(96)
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5.2.1. Parameter values .

bunch frequency f0 = 0.5× 109 Hz,

beam current Ie = 100µA,

electrons/bunch Ne = 1.25× 105,

penalty function = 0.25,

electron energy = 123 MeV,

relativistic gamma = 241,

electron magnetic moment = −0.928× 10−23, J/T,

Resonator Q− value = 104,

resonator frequency = 1.0 GHz,

resonator dimensions a/b/d = 0.4/0.05/0.4 m

a b d µ0

8
= 1.26× 10−9 J

(A/m)2
,√

Qsq.p.

2πfr

8

abdµ0

1

P ext
=

40.1√
P ext

,

P SG

P ext
=
−4.23× 10−9

√
W√

P ext [W]
. (97)

6. Room temperature S-G polarimetry test at CEBAF

The S-G signal is extremely weak compared to direct beam charge excitation. The
cleanest way to extract the S-G signal is for its frequency to differ from the frequency
of the charge signal. This makes it essential to shift the S-G frequency away from
the beam repetition frequency. In a storage ring it is possible to exploit the spin tune
precession to perform this frequency shift.

In a linear accelerator, the fact that each bunch passes the S-G resonator only once,
makes it hard to arrange for the polarization of successive bunches to be different. It
can ony be done at the electron source, either by alternating the (circular) polarization
of the laser of the photo-injector, or by swinging the electron polarization at the front
end of the injector line where the electron energy is still quite low. The frequency with
which the bunch polarization oscillates is thought to be limited to, perhaps, 10 kHz,
which corresponds to a polarization oscillation period of Tpol = 100µ s.

The Stern-Gerlach resonant cavity can serve as a filter to separate the S-G signal
from the direct charge signal, based on their different frequencies. For best cancella-
tion of the direct charge excitations, the cavity oscillates with constant amplitude for
time long enough at the S-G frequency for the direct excitation to fall out of phase by
an amount large compared to 2π. For best separation one wants the Q-value of S-G
resonator to be high. For ultimate performance this will require a cryogenic supercon-
ducting cavity. But we have already accepted that the first test should use a room tem-
perature cavity. For frequency such as fr ≈ 1 GHz, one expects, for example, Qr ≈ 104.
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This corresponds to a resonator damping lifetime of about Tdamp ≈ 10µs, which is small
compared to the polarization oscillation period. The fact that Tdamp << Tpol largely
defeats the filtering action—the beam polarization does not change rapidly enough.

In the extraction beam line of CEBAF, which is a recirculating linac, a single bunch
can, similarly, pass through the S-G resonator only once. But now adjacent A and B
bunches (coming in the sequence A,B,A,B,· · · , can have different energies (because
of their different number of recirculations). Furthermore, because of their different
histories, adjacent bunches can be arranged to have arbitrarily different polarizations,
for example both purely transverse, but of opposite sign. Since the bunch repetition
rate is of order 1 GHz, the number of S-G resonator cycles during damping time Tdamp ≈
10−5 s is of order 104.

This makes possible a huge suppression of direct charge excitation relative to S-G
excitation. There are however, effects that limit the effectiveness of this suppression.
There will be an r.m.s. deviation σAB between the A and B bunches. Furthermore,
to the extent the S-G resonator is tipped vertically by r.m.s. angle σΘv , the benefit
that the S-G cavity resonates in a TM mode (insensitive to passing beam charge) is
defeated.

Figure 7 illustrates such a CEBAF-like bunch train, passing through the S-G res-
onator. Table 1, introduced earlier in the paper, gives the enhancement of the S-
G signal relative to the direct charge signal, coming from ∆f/f filtering and other
experimental design features. Since bunch B has twice the energy of bunch A, its
S-G signal is four times greater. But, more to the point, its dominant frequency is
fr=500 MHz, half as great as the bunch frequency, whose dominant, and lowest, fre-
quency is f0=1000 MHz.

Comparison of TE and TM mode cut-off frequencies are discussed in connection
with Eq. (89). By decreasing the b/a ratio the frequencies of TM modes are moved
to high frequencies. This is favorable for S-G polarimetry since beam magnetization
excites TE modes, while beam charge excites TM modes.

The cut-off frequency in a rectangular waveguide, with horizontal mode index m,
and vertical mode index n = 0 is given by

fc =
c

2

m

a
. (98)

Consider a rectangular cavity with dimensions, as defined in Figure 1, ar=0.424 m,
br=0.05 m, dr=0.424 m. For the TE202 resonant mode with these dimensions the pa-
rameters are

resonant frequency, fr =
c

λ
= 0.5 GHz,

free space wavelength, λr =
c

fr
= 0.6 m,

guide wavelength, λrg = λ/
√

2 = 0.424 m. (99)
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Figure 7. Beam current Ie(t) pulses (above) and beam magnetiza-
tion P I(t) (pulses (below) for a possible CEBAF extraction line test
of Stern-Gerlach resonant polarimetry. (Though shown as 1 GHz, the
actual bunch repetition frequency would be 1.5 GHz.) Beam bunches A,
with energy EA and effective S-G strength SA = −1, are interleaved with
B-bunches of energy EB = 2EA and S-G strength SB = 4.

The parameters for the adjacent waveguide connections are abl=0.180 m, bbl=0.05 m.
The cut-off frequency for such a waveguide is given by

cut− off frequency, f blc =
c

2a
= 0.833 GHz,

(100)

This value of beam-line cut-off frequency is high enough that the cavity cannot oscillate
losslessly at the bunch train frequency or at any harmonic of that frequency—these
are the frequencies present in the upper plot of Figure 7. However the resonator can
oscillate with high Qr-value at the 0.5 GHz S-G frequency of the beam magnetization.

7. Experimental considerations

7.1. Separating MDM and direct charge excitation frequencies. Resonant
excitation by MDM has mainly been discussed. An issue likely to be just as important
is the spurious excitation that will be caused by direct cavity excitation caused by the
beam charge. As has been stated repeatedly, resonant polarimetry favors the so-called
TE modes because their vanishing laboratory frame longitudinal electric field eliminates
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the leading source of direct coupling to beam charge.4 The leading way of reducing
this “background” source is to consider only TE modes for resonant polarimetry. With
no longitudinal electric field TE modes do not couple directly to the beam charge. In
this paper I therefore emphasize TE modes, expecting to pick the TE mode of lowest
frequency fr as the frequency tuned to the frequency with which the magnetization of
the passing beam oscillates. In a cylindrical waveguide this mode is of TE11 type, but
rectangular cavities are shown later to be more appropriate than

The most important parameter influencing the foreground to background ratio is
the frequency difference between the bunch frequency and the magnetization frequency.
In the eventual EDM experiment these frequencies will probably have to be quite close.
But, for first demonstrating the resonant polarimeter principle, it should be possible to
move the MDM frequency well away from any harmonic of the revolution frequency, in
order to improve foreground to background ratio. In any case, the two measures of ease
of suppressing direct excitation are large frequency difference ∆f and large resonator
Q-value.

The polarization vector of a vertically polarized beam in a storage ring survives
more or less indefinitely. But, passing such a beam through a resonator cavity, the
MDM excitation frequency is automatically a harmonic of the revolution frequency.
The simplest polarized linac beam configurations have the same property. In either
storage ring or linac the beam has to be specially tailored to move the Stern-Gerlach
magnetization frequency away from the bunch repetition frequency.

There is a natural way to shift the MDM frequency away from harmonics of the
revolution frequency in a electron storage ring such as ELSA. It is to impulsively rotate
the natural vertical polarization into the horizontal plane as rapidly as possible. From
this condition every particle will precess relative to the orbit direction at spin tune
(i.e. frequency) Geγ. For electrons, with Ge = 0.00116 and, for example, γ

V
= 2000.

the spin GeγV precession rate and the revolution frequency are therefore comparable.
By varying γ

V
the forground and background frequency difference can be regarded as

arbitrarily adjustable. This is ideal for separating the Stern-Gerlach frequency from
the nearest revolution harmonic.

After rotation of all spins into the horizontal plane, the presence of beam energy
spread would tend to cause the polarization of a coasting beam to decohere rapidly,
for example in milliseconds. But the beam will, in fact, be bunched, and synchrotron
oscillations will, to a first approximation, suppress the decoherence, extending the spin
coherence time (SCT), to perhaps several seconds. With further effort, for example
sextupole family tuning, SCT may be further increased. This possibility needs to be
analysed using a particle and spin tracking code such as ETEAPOT[15][16].

4Our concentration on only TE modes differs from Derbenev[1] who concentrated on a single
TM mode. This different emphasis is based purely on my concern about the experimental difficulties
imposed by longitudinal electric fields present with TM modes; because of their non-zero electric fields,
these modes couple directly to beam charge, which presents an experimental complication. Otherwise
the choice between TE and TM modes is qualitatively immaterial for the essential issues discussed in
this paper.
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Eventually, the Stern-Gerlach resonator will be superconducting, and extremely
high Q-values will be achievable. If the resonator frequency is, say, 1 GHz, then there
will be 109 cycles per second and the ring-up time for Q = 109 will be a few seconds.
This can be fully effective only if the beam SCT value exceeds a few seconds. These
parameters can be used as parameter choices for obtaining “ball-park” estimates of
achievable polarimeter performance.

An ideal resonator would have a single mode that can be excited by the magnetic
dipole of a passing charge, but not by the charge itself. Unfortunately, in reality,
a microwave cavity has many resonant modes, of both TE and TM type, starting
from some lowest cut-off frequency and extending to arbitrarily high frequency. In a
cylindrical resonator the mode lowest in frequency is TE11, followed by TM01. The
order of cylindrical mode frequencies is given in detail in Figure 9. In a rectangular
waveguide the lowest frequency mode is TE10 (See Figure 8.)

Having picked the lowest frequency TE mode as “foreground” and the lowest TM
mode as “background” the task is to further minimize the direct charge response rel-
ative to the MDM response. We assume the MDM frequency ωr can be adjusted
arbitrarily, and has been tuned to the lowest cavity TE mode frequency. In the cylin-
drical resonator case this is the TE111 (or, for longer cavities, TE112, TE113, etc.) The
closest in frequency background mode is TM011, with frequency fSG + ∆f .

There are two ways to discriminate against the background of direct charge exci-
tation of the TM011 mode relative to the foreground MDM exitation of TE111 mode.
The ω(TE111) frequency is situated on the lower tail of the ω(TM011) frequency re-
sponse. Estimating the cavity Q-factors to be the same for both modes, this will
reduce the background excitation at ω(TM011) by one factor of Q∆ω/ωr. The net
background/foreground signal voltage ratio at ωr would then be reduced by the same
factor. With little control over ∆ω this factor can only be maximized by increasing
Q. There is also the possibility of damping the TM011 and higer modes relative to the
TE111 mode, to reduce the higher mode excitation. But the benefit is less, since the
damping also broadens the higher mode frequency spectrum.

Unfortunately, because the electron charge interaction is much greater than the
magnetic moment interaction, the on-resonance response to beam charge at the TM011

mode frequency would be much greater than the on-resonance response to beam mag-
netization at the TE111 mode frequency. It is this huge ratio that needs to be overcome.

Reducing the sensitivity to direct charge excitation is pursued for rectangular res-
onators in the following section.

7.2. Estimation of skew penalty function P(Θ) . For calculating ∆φ we pro-
ceed numerically, specializing to the TE202 case, with Θ = tan−1 1/2 = 26.565◦. Cav-
ity fields for this case are shown in Figures 2 (c). The TE202 mode parameters are
(m,n, p) = (2, 0, 2), with a = d. It is convenient to scale spatial coordinates according
to

x̃ =
π

d
x, y = 0, z̃ =

π

d
z, Kc =

2π

a
. (101)
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Skew coordinates (x̃′, z̃′) are related as in Figure 2 (b). With

x̃ =
2π

a
x, y = 0, z̃ =

2π

d
z, (102)

the coordinate transformation is

x̃ = cos Θ x̃′ − sin Θ z̃′,

z̃ = sin Θ x̃′ + cos Θ z̃′. (103)

Copying formulas from Conte[2], the field components are given by

Bx

B0

= − sin x̃ cos z̃ cosωt,

Bz

B0

= cos x̃ sin z̃ cosωt,

Ey
B0

=
ω

Kc

sin x̃ sin z̃ sinωt, (104)

At the instant a particle enters the cavity at (x̃, z̃) = (π/2, 0) , traveling at speed V at
angle Θ, as shown in Figure 2 (c), the phase of the horizontal magnetic field is zero by
definition, meaning the magnetic arrow points right. At this instant,, at the eventual
exit point (x̃, z̃) = (−π/2, 2π), the phase is φI = −π, meaning the horizontal magnetic
field points left. (It would have been equivalent to have chosen the opposite sign for
φI .)

On entry there is a longitudinal component of magnetic field Bentry
‖ = −B0 sin Θ.

Our task is to find the longitudinal magnetic field Bexit
‖ at the instant the particle exits

the cavity. The following equations are needed:

d = λg, f =
vg
λg

=

√
2 c

λg
, LV =

√
5

2
λg, tV =

LV
V

=

√
5

2

d

V
. (105)

Here λg is the guide wavelength, f = ω/(2π) is the resonant frequency, LV is the skew
path length through the cavity, and tV is the time of flight of the particle through the
cavity. The wave exit phase is given by the starting phase at the exit point plus the
cavity phase advance during the time tV . This is also equal to the wave phase advance
∆φ. That is

∆φ = −π + 2πftV = −π + 2π

√
2 c

λg

√
5

2

λg
V

= −π + 2π
√

2 c

√
5

2

1

V

= π
(
− 1 +

√
10

β
V

)
≈ 2.16228π ≡ 0.16228π. (106)

We have taken βV = 1 and, in the last line, subtracting 2π has no observable effect.
The role played by the resonant cavity is to carve out, from the passing waves, a

slice of phase that acts on the particle. The worst possible slice would be any multiple
of 2π, since there would be no net excitation in that case. This would be the case
for Θ = 0. This is why the path through the resonator has to be slanted. The best
possible slice would be any odd multiple of π, which would give the maximumum
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possible excitation. Quoted as a fraction of the maximum, in our case we have found
∆φ/π = 0.16228.

Unlike normal incidence to the cavity, for which input and output surfaces are
permanent nodes and no net excitation possible, we are free to enter the cavity at
arbitrary phase. But then the exiting phase is fixed. We should therefore enter the
cavity at

Φoptimal
I = −∆φ

2
= 0.08114π. (107)

It is actually the integral of a sinusoid rather than the phase angle that establishes the
fractional excitation. Allowing for this we define a skew-entrance penalty P(Θ) by

P(Θ) =
∆E
Emax

(Θ) = 2 sin
∆φ

2
. (108)

From this numerical example, for TE202, we have found P(26.6◦) = 0.252. The effect
on Stern-Gerlach polarimetry is that, compared to direct electric excitation, transverse
polarization is enhanced by a factor of 0.25γ2

V
. Numerically, for GeV electrons, the

enhancement factor is 500.
This is a respectable enhancement factor, but one can investigate other configura-

tions to maximize the excitation. Repeating the same calculation in the case illustrated
in Figure 2(a), with Θ = 45◦ in a TE201 cavity. From equations like (104), the longi-
tudinal magnetic field component along the skew axis is

√
2B′z = (cos x̃ sin z̃ + sin x̃ cos z̃) cosωt

= sin(x̃+ z̃) = sin(
√

2x̃′) cosωt. (109)

The longitudinal force is proportional to ∂B′z/∂z. But, according to this equation,
B′z is independent of z and the derivative vanishes. As a result the penalty function
vanishes; P(45◦) = 0. This is because the particle trajectory is parallel to two of the
skew waves and perpendicular to the other two. Other attempts to increase P(Θ) are
considered later.

7.3. Estimation of background electric excitation. To estimate “background
excitation we compare the expected MD excitations with the more familiar direct
charge cavity excitation. After cancelling common factors, in the excitation ratios that
have been derived so far, until the direct charge excitation term has been reduced to
just the charge “e”, then the longitudinal and transverse MD terms become “effective
charges”, and foreground/background ratios will be equal to these effective charges
divided by e.

It has been the presence of the γ2
V

factor in the third of Eqs. (84) that has made
transverse Stern-Gerlach polarimetry seem especially promising. It is known from
Eq. (66) that this factor gives the transverse magnetic moment a γ

V
advantage over

longitudinal excitation. We have seen earlier that destructive interference makes this
unduly optimistic, even fatal for on-axis beams through the resonator. Having partially
suppressed the destructive interference by using a canted resonator, we continue the
numerical foreground to background comparison.
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As a first step to expressing these relations in MKS units the replacement B0‖ =
µ0H0‖ has been made. The numerical value of µ0 (which is not dimensionless) in MKS

units is 4π × 10−7Ṫ-m/A. For numerical evaluation it is then appropriate to intoduce
“impedances” ZTM and ZTE given by

ZTM = Z0

√
1− f 2

c /f
2,

ZTE =
Z0√

1− f 2
c /f

2
, (110)

ZTM

ZTE

= 1− f 2
c /f

2.

where E = ZH and the value of “free space impedance” Z0 is 377 V/A. Also

cosα± = ±
√

1− f 2
c /f

2, and sinα± = fc/f. (111)

Below Eq. (43) a typical value for the square root factor was said to be 0.5. For
simplicity in producing a crude estimate, the square root factor can set to 1, causing
the impedance factor to be just Z0. For accurate calculations the frequency-dependent
factors have to be restored.

8. Recapitulation and conclusions

As stated in the paper’s first sentence, the essential conclusions have already been
given in the first section. A new “skew wave” waveguide formalism, tailored to a canted
resonator configuration has been introduced. Canting the resonator partially defeats
the destructive interference that suppresses Stern-Gerlach resonant excitation for on-
axis beam passage through the cavity. For conventional, on-axis, polarized beam, this
formalism appears to be equivalent to that of Conte et al.[2].

To me the development of Stern-Gerlach polarimetry cannot be separated from the
challenge of measuring the electric dipole moments (EDMs) of fundamental particles,
(meaning electron, proton, and deuteron.) These measurements require exquisite, non-
destructive, control of polarized beams in storage rings. Stern-Gerlach polarimetry is
the only contemplated (much less proven) method of providing the necessary beam
control.

The need for Stern-Gerlach polarimetry is most urgent in the electron case. With
effective polarimetry the electron EDM measurement would be made relatively inex-
pensive by its relatively low, 15 MeV beam energy. But there is currently no form of
electron polarimetry capable of providing the necessary beam control.

The situation is less unambiguous in the case of proton or deuteron EDMs. Quite
well understood plans have been developed for measuring the proton EDM using beam
control based on hadron-carbon scattering asymmetry. In time this form of polarimetry
will permit the proton EDM to be measured, though possibly not at a level of precision
sufficient to provide a stringent test of the standard model. Succesful Stern-Gerlach
polarimetry can be expected to improve the accuracy of such proton (or deuteron)
EDM measurements by an order of magnitude or more.
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This paper has therefore been organized as a conservative development plan for
developing Stern-Gerlach polarimetry, rather than as a most optimistic calculation of
what the ultimate eventual polarimetry capability may be.

The obvious first step is to demonstrate the resonant excitation of a cavity by a
polarized beam. Though first proposed 25 years ago this Stern-Gerlach effect has never
been demonstrated experimentally. This failure can be partly ascribed to experimen-
talist’s (fully-justified) timidity at attempting a very risky experiment and partly to
a theorist’s (correct) contention that the proposed experiment was guaranteed to fail.
The only thing that has changed in the meantime is my introduction of slanted, off-axis
passage of the polarized beam through the resonator. This re-establishes the original
contention that the Stern-Gerlach force can be used to measure the polarization of a
polarized beam, both non-destructively and with maximum analyzing power.

An ideal first test would use an ultra-high-Q superconducting cavity, with state-of-
the-art instrumentation. This route could definitively test the principles at issue. But,
regrettably, this route will be expensive and time consuming. This paper has therefore
attempted to identify a first, inexpensive, room temperature test, with the potential
of confirming the essential features of cavity excitation by Stern-Gerlach forces. Once
proven at a rudimentary level, the further improvement of this form of polarimetry will
be easy to justify.

The expense for room temperature cavity development for this proposed first test
is minimal, and the required beam time to perform a proof-of-principle test will not
be great. But the sacrifice in signal level and signal-to-noise ratio accompanying room
temperature (as contrasted with low temperature) operation makes the calculated sig-
nal level all the more critical. I hope the formulas given in this paper are adequate
to support planning of linac and/or storage ring tests. It is not obvious which route
is more promising. Included in this uncertainty is the practicality and expense of pro-
ducing the polarized beam needed to perform the first test. From my point of view
this has become the dominant experimental uncertainty, and requires the most urgent
study and development.

Equally urgent is theoretical confirmation that the slanted cavity approach does, in
fact, overcome the strong tendency for destructive interference of Stern-Gerlach forces
to suppress cavity excitation by a polarized beam.

I would like to thank Saul Teukolsky for helpful advice on this calculation.
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1. Appendices

1.1. Some magnetic dipole physical constants. The physical dimensions of
magnetic moment µ∗ are current times area, so its MKS units are A.m2. Warnings
have been given in the text that these physical units can be somewhat misleading when
applied to the magnetic moment of a point particle, especially as regards transformation
between reference frames. But, dimensionally, these are valid units for µ∗.) On the
other hand, because µ∗B is an energy, µ∗ can also be measured in MKS units of
Joules/Tesla. Numerical values for various magnetic-moment related quantities are
given for electron, proton, and deuteron, in Table 4.

Table 4. Electron, proton, and deuteron magnetic parameters. The
units are SI, but with energies expressed in eV. Anomalous precession
rates are in angular units of radians/second. The numbers are given
to many-many places to indicate the accuracy to which the values are
known. However, the actual values should not be trusted as authoratively
correct to the accuracy they are shown here. In this paper, the scalar
magnetic moment physical constants, µe, µp. µd, etc. are represented by
the symbol µ∗.

parameter symbol value unit

Bohr magneton µB = e~/(2me) 5.7883818066× 10−5 eV/T

e g-factor ge = 2µe/µB 2.00231930436182
anomalous mag. mom. Ge = (|ge| − 2)/2 0.0011596521809

Larmor prec. rate geµB/~ −1.760859708× 1011 s−1/T
anom. precession rate GeµB/~ 1.019809775× 108 s−1/T

nuclear magneton µN = e~/(2mN ) 3.1524512550× 10−8 eV/T

p g-factor gp = 2µp/µN 5.585694702
anomalous mag. mom. Gp = gp/2− 1 1.792847356

Larmor prec. rate gpµN/~ 2.675222005× 108 s−1/T
anom. precession rate GpµN/~ 0.859× 108 s−1/T

d g-factor gd = 2µd/µN 0.8574382308
anomalous mag. mom. Gd = gd − 1 -0.14298
d/p mag. mom. ratio µd/µd 0.3070122070

Larmor prec. rate gdµN/~ 0.821325812 s−1/T
anom. precession rate GdµN/~ −0.6851× 107 s−1/T

2. Electromagnetic fields in low order resonant cavity modes

2.1. Resonator modes. The resonant polarimeter modes of choice will be TE
rather than TM. Just as TM, because of its non-zero longitudinal electric field, is
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needed for acceleration, TE is appropriate for resonant polarimetry because TE modes
do not accelerate. Vanishing longitudinal electric field makes TE modes insensitive
to beam charge. Equally important, their non-vanishing longitudinal magnetic fields
make TE modes specially sensitive to magnetic moment excitation.

TE resonator modes are based on TE waveguide modes. The field patterns in two
possible TE waveguide modes (TE01 and TE11) are shown in Figure 11. The originally
favored cylindrical mode was TE111, shown on the right in this figure.

Cut-off frequencies for cylindrical waveguide modes are given in Table 9. It is
important to remember that any cavity whatsoever has both TE and TM modes.
What distinguishes a resonator as being TE is that it is being driven at a TE mode
resonant frequency. Whatever the cavity shape, there are inevitably TM modes at
not very remote frequencies. Resonant frequencies for a cavity having the favored pill-
box shape, with definite length/radius (d/a) ratios, are given in Table 9. Absolute
frequencies for a pill-box shaped cylindrical resonator with definite dimensions are
given in Table 10. The entries in this table can be easily scaled, for example to lower
frequencies, by increasing all dimensions proportionally.

It is now known that destructive interference for on-axis beam passage through
the resonator favors rectangular resonators and pretty much rules out cylindrical res-
onators. The rectangular resonator mode most closely resembling cylindrical TE111.
Its fields are plotted in Figure 8.

Figure 8. Field patterns for low order rectangular waveguide modes,
TE10 and TE20.
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Figure 9. Resonant frequencies of cylindrical resonator modes as a
function of length/radius=d/a.

Figure 10. Cylindrical resonator mode frequencies for a special case,
a=4.826 cm, d=17.323 cm, d/a=3.59. As required, the lowest frequency
mode is TE, and the closest TM mode is well separated. For lower
frequency modes the dimensions would be proportionally greater.
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Figure 11. Various views of the electric and magnetic lines in promising
cylindrical modes, Ramo et al.[9] above, and Waveguide Handbook[21]
below. TE01 on the left, TE11 on the right. Solid lines and dots are
electric fields. Broken lines are magnetic fields (different spacing for
different magnetic components).


