Bubble Chamber: Experimental Overview

August 18, 2015

https://wiki.jlab.org/ciswiki/index.php/Bubble_Chamber

OUTLINE

- Nucleosynthesis and ¹²C(α,γ)¹⁶O
 Reaction
- Time Reversal Reaction: ${}^{16}O(\gamma, \alpha){}^{12}C$
- Electron Beam Requirements
- Bremsstrahlung Beam
- Penfold-Leiss Cross Section Unfolding
- JLab Projected Results
- Test Beamline
- Bubble Chamber Test Plan

NUCLEOSYNTHESIS AND ${}^{12}C(\alpha,\gamma){}^{16}O$

> The *holy grail* of nuclear astrophysics:

1																		
2	of the Elements							В	Ċ	N	o	F	Ne					
3	Na	° Mg	шв	īVВ	VB	VIB	VIB	_	- 111 -	_	IB	IIB	ÂI	Si	۴	ŝ	CI	Ar
4	ĸ	Ca	Sc	Ti	۳	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	š	³⁹ Y	Zr	Nb	Mo	Tc	Ru	e Rh	Pd	Âg	Cd	In	s: Sn	Sb	Te	^{зэ}	Же
6	Cs	98 Ba	"La	72 Hf	Ta	W	Re	л Оs	″lr	Pt	Au	∾ Hg	Π	е Рb	eo Bi	e Po	At	Rn
7	Fr	Ra	∾ +Ac	Rf	y) Ha	Sg	NS NS	Hs	ste Mt	 110	111	112 112	"" 113					
•	Lanth Series	anide 3	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
+	Actini Series	de I	Th	Pa	Ű	Np	Pu	Âm	°°C m	Bk	"Cf	"Es	Fm	Md	No	Lr		

Affects synthesis of most of elements in periodic table

Sets N(¹²C)/N(¹⁶O) (≈0.4) ratio in universe

Determines minimum mass star requires to become supernova

Heroic Efforts in Search of ${}^{12}C(\alpha,\gamma){}^{16}O$

- Previous cross section measurements:
 - I. Helium ions on carbon target: ${}^{12}C(\alpha,\gamma){}^{16}O$
 - II. Carbon ions on helium gas: ⁴He(¹²C, γ)¹⁶O or ⁴He(¹²C, ¹⁶O)γ (Schürmann)

Experiment	Beam Current (mA)	Target (nuclei/cm²)	Time (h)
Redder	0.7	¹² C, 3 10 ¹⁸	900
Ouellet	0.03	¹² C, 5 10 ¹⁸	1950
Roters	0.02	⁴ He, 1 10 ¹⁹	5000
Kunz	0.5	¹² C, 3 10 ¹⁸	700
EUROGAM	0.34	¹² C, 1 10 ¹⁹	2100
GANDI	0.6	¹² C, 2 10 ¹⁸	
Schürmann	0.01	⁴ He, 4 10 ¹⁷	
Plag	0.005	¹² C, 6 10 ¹⁸	278

Astrophysical S-Factor ${}^{12}C(\alpha,\gamma){}^{16}O$

Define S-Factor to remove both 1/E dependence of nuclear cross sections and Coulomb barrier transmission probability:

TIME REVERSAL REACTION

$$m_{^{12}C\alpha}c^{^{2}} = \frac{M(^{^{12}}C) \cdot M(\alpha)}{M(^{^{12}}C) + M(\alpha)} = 2796 \text{ MeV}$$

Q = +7.162 MeV

$$E_{\gamma} \cong E_{CM} + Q$$

$$\sigma_{(\gamma,\alpha)}(E_{\gamma}) = \frac{m_{12}}{E_{\gamma}^{2}} \sigma_{(\alpha,\gamma)}(E_{CM})$$

NEW APPROACH: REVERSAL REACTION + BUBBLE CHAMBER

- > Extra gain (factor of 100) by measuring time reversal reaction
- > Bremsstrahlung at JLab $\sim 10^9 \gamma$ /s (top 250 keV)
- Target density up to 10^4 higher than conventional targets. Number of ¹⁶O nuclei = 3.5×10^{22} /cm² (3.0 cm cell)
- > Measures total cross section σ_{tot} (or $S_{tot}=S_{E1}+S_{E2}$)
- Solid Angle and Detector Efficiency = 100%
- Electromagnetic debris (electrons and gammas, or positrons) do NOT trigger nucleation (detector is insensitive to γ-rays by at least 1 part in 10¹¹)

ELECTRON BEAM REQUIREMENTS

I. Beam Properties at Radiator:

Beam Kinetic Energy, (MeV)	7.9 – 8.5
Beam Current (µA)	0.01 - 100
Absolute Beam Energy Uncertainty	<0.1%
Relative Beam Energy Uncertainty	<0.02%
Energy Resolution (Spread), σ_T/T	<0.06%
Beam Size, σ _{x,y} (mm)	1
Polarization	None

BREMSSTRAHLUNG BEAM

Events

- Use both GEANT4 and FLUKA to calculate Bremsstrahlung spectra (we will not measure Bremsstrahlung spectra)
- Monte Carlo simulation of Bremsstrahlung at radiotherapy energies is well studied, accuracy: ±5%

¹⁶O(γ,α)¹²C is ideal case for Bremsstrahlung beam and Penfold–Leiss Unfolding:

- Very steep cross section; only photons near endpoint contribute to yield
- II. No-structure (resonances)

PENFOLD-LEISS CROSS SECTION UNFOLDING

• Measure yields at: $E = E_1, E_2, \dots, E_n$ where, $E_i - E_{i-1} = \Delta$, i = 2, n

$$Y(E_i) = \int_{th}^{E_i} n_{\gamma}(E_i, k) \sigma(k) dk \approx \sum_{j=1}^i N_{\gamma}(E_i, \Delta, E_j) \sigma(E_j)$$

Volterra Integral Equation of First Kind

• Solution can be written in two forms:

Method of Quadratures: numerical solution of integral equation based on replacement of integral by finite sum

$$\sigma_{i} = \frac{1}{N_{ii}} \left[y_{i} - \sum_{j=1}^{i-1} \left(N_{ij} \sigma_{j} \right) \right]$$

• Or, Matrix form:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} N_{\gamma,11} & 0 & \cdots & 0 \\ N_{\gamma,21} & N_{\gamma,22} & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 \\ N_{\gamma,n1} & N_{\gamma,n2} & \cdots & N_{\gamma,nn} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_n \end{bmatrix}$$

$$[Y] = [N] \bullet [\sigma]$$
$$[\sigma] = [N]^{-1} \bullet [Y]$$

Electron Beam K. E.	Cross Section (nb)	Stat Error (no bg, %)	Stat Error (with bg, %)
7.9	0.046	4.4	24.5
8.0	0.185	6.0	20.7
8.1	0.58	6.3	14.7
8.2	1.53	8.2	13.8
8.3	3.49	9.1	13.3
8.4	7.2	10.6	13.8
8.5	13.6	12.2	14.8

Photon Energy (MeV)

Absolute Beam Energy, <i>δE</i>	0.1%
Beam Current, δI/I	3%
Photon Flux <i>, δφ/φ</i>	5%
Radiator Thickness, δR/R	3%
Bubble Chamber Thickness, $\delta T/T$	3%
Bubble Chamber Efficiency, ε	5%

Electron Beam K. E.	Cross Section (nb)	Sys Error (Energy, %)	Sys Error (Total, %)
7.9	0.046	12.5	15.3
8.0	0.185	10.2	13.5
8.1	0.58	8.3	12.2
8.2	1.53	7.0	11.4
8.3	3.49	6.0	10.7
8.4	7.2	5.3	10.5
8.5	13.6	4.7	10.1

JLAB PROJECTED ¹²C(α , γ)¹⁶O S-Factor

> Statistical Error: dominated by background subtraction from ¹⁸O(γ , α)¹⁴C (depletion

= 5,000)

Electron Beam K. E.	Gamma Energy (MeV)	Е _{см} (MeV)	Cross Section (nb)	S _{tot} Factor (keV b)	Stat Error (%)	Sys Error (Total, %)
7.9	7.85	0.69	0.046	62.2	24.5	15.3
8.0	7.95	0.79	0.185	48.7	20.7	13.5
8.1	8.05	0.89	0.58	41.8	14.7	12.2
8.2	8.15	0.99	1.53	35.5	13.8	11.4
8.3	8.25	1.09	3.49	32.0	13.3	10.7
8.4	8.35	1.19	7.2	28.8	13.8	10.5
8.5	8.45	1.29	13.6	26.3	14.8	10.1

Bubble Chamber experiment measures total S-Factor, S_{E1} + S_{E2}

SUPERHEATED TARGETS

I. List of superheated liquids to be used in experiment:

	N ₂ O Targets		¹⁷ O	¹⁸ O	
	Natural Target	99.757%	0.038%	0.205%	
Physics	¹⁶ O Target		Depleted > 5,000	Depleted > 5,000	
Measure	¹⁷ O Target		Enriched > 80%	<1.0%	
Backgrounds	¹⁸ O Target		<1.0%	Enriched > 80%	

- II. Readout:
 - I. Fast Digital Camera
 - II. Acoustic Signal to discriminate between neutron and alpha events

TEST BEAMLINE

15

SCHEMATICS OF TEST BEAMLINE

- > Power deposited in radiator (100 μ A and 8.5 MeV) :
 - I. 6 mm: Energy loss = 8.5 MeV, P = 850 W
- Pure Copper and Aluminum (high neutron threshold):
 - I. $^{63}C(\gamma,n)$ threshold = 10.86 MeV
 - II. ${}^{27}AI(\gamma,n)$ threshold = 13.06 MeV

NEW BEAMLINE ELEMENTS

- New Beamline elements installed in support of Bubble Chamber experiment:
- I. Fast Valve after ¼ Cryounit

Protect ¼ Cryo-unit from vacuum failure

MEASURING ABSOLUTE BEAM ENERGY

TEST BEAMLINE COMMISSIONING

- Beamline was ready since Fall 2014
- Approved to run 10 μA CW and 10 MeV/c
- Completed hot checkout and beam checkout
- Beam Studies completed so far:
 - I. Delivered 10.0 μA 10.0 MeV/c for 5 hours in August 2015
 - II. Measured beam momentum at different ¼ cryo-unit settings
 - III. Measured beam charge at different beam currents
- Re-doing realistic thermal analysis to be able to run up to 100 μA

BUBBLE CHAMBER TEST PLAN

- 1. Fill with natural N_2O test bubble chamber systems operation
- 2. With beam on bubble chamber radiator (Sept 9 Sept 18, 2015):
 - I. How does CCD camera perform under beam-on conditions?
 - II. Count rates on bubble chamber. Do we get single or multiple bubbles from Bremsstrahlung beam exposure?
 - III. Measure gamma ray beam spatial profile as reflected by bubble distribution. Is collimator effective in defining the gamma-ray beam?
- 3. Background measurements:
 - I. Measure beam off environmental background in chamber-injector area
 - II. Measure beam on background by looking outside fiducial volume
 - III. Measure background with beam to Faraday Cup in CEBAF beamline (about two meters from chamber)
 - IV. Measure neutron events in chamber. Neutron radiation detectors in injector region will indicate if any neutrons are generated (especially at beam energies higher than 8.5 MeV).

- 4. Fill with C_2F_6 test bubble chamber systems operation. This is planned later in September after first beam test.
- 5. With beam (planned in October, 2015)
 - I. Measure few data points of from ${}^{19}F(\gamma,\alpha){}^{15}N$ to perform a Penfold-Leiss unfolding
 - II. Compare measured cross section to our Duke data
 - > Fluorine is nice for a first Penfold-Leiss unfolding:
 - Only one stable natural isotope (¹⁹F)
 - Low electron beam energy: 4.6 5.2 MeV
 - No background reactions from carbon

BACKUP SLIDES

