5 MeV Mott Polarimeter Progress

April 10, 2012

Outline

- Mott Scattering: Cross Section and Sherman Function
- Measuring Mott Asymmetry
- Mott Detectors
- Data Acquisition
- Analysis
- Charge Asymmetry

Mott Scattering

• Electron motion in the electric field of nucleus results in magnetic field in electron rest frame, $\vec{B} = -\frac{1}{c} \vec{V} \times \vec{E}$ if \vec{r} is nucleus-electron separation, then $\vec{E} = \frac{Ze}{r^3} \vec{r}$ and

$$\vec{B} = \frac{Ze}{cr^3} \vec{r} \times \vec{v} = \frac{Ze}{mcr^3} \vec{L}$$

• Interaction of this magnetic field with electron (spin) magnetic moment introduces a term $V_{so} = -\vec{\mu}_s \bullet \vec{L}$ in the scattering potential,

$$V = V_c + V_{so} = \frac{Ze}{r} + \frac{Ze^2}{2m^2c^2r^3}\vec{L} \cdot \vec{S}$$

• Presence of spin-orbit term in scattering potential introduces spin dependence in scattering cross section $\sigma(\theta)$ which could be detected as a left/right count rate asymmetry

Note:

- Parity-conserving: Measure spin-momentum correlation of the type: $\vec{S}.(\vec{k_1} \times \vec{k_2})$ Transverse (or Normal) Beam Asymmetry measured recently using the setup of parity-violating experiments at high energies (due to two-photon exchange) probes the same spin-momentum correlation as Mott Asymmetry at low energies (due to spin-orbit interaction of electron moving in a Coulomb field).
- Parity-violating: Measure spin-momentum correlation of the type:

 $\vec{S}.\vec{k_1}$

Mott Cross Section and Sherman Function

Mott cross section:

$$\sigma(\theta) = I(\theta)[1 + S(\theta)\vec{P} \bullet \hat{n}]$$

where,
$$I(\theta)$$
 is the un-polarized cross section,
$$I(\theta) = \left(\frac{\hbar c}{p}\right)^2 \left[\left(\frac{Ze^2}{\hbar c\beta}\right)^2 \left(1-\beta^2\right) \frac{\left|F(\theta)\right|^2}{\sin^2(\theta/2)} + \frac{\left|G(\theta)\right|^2}{\cos^2(\theta/2)}\right]$$

and $S(\theta)$ is the analyzing power (Sherman Function),

$$S(\theta) = 2 \times \left(\frac{\hbar c}{p}\right)^{2} \left(\frac{Ze^{2}}{\hbar c\beta}\right) \frac{\sqrt{1-\beta^{2}}}{\sin(\theta/2)I(\theta)} \left[F(\theta)G^{*}(\theta) + F^{*}(\theta)G(\theta)\right]$$

 The Sherman Function is largest for high-Z (Gold, Z=79) targets and lowenergy electrons

Theoretical corrections to Sherman Function:

- I. Screening by atomic electrons which is relevant for low energy electrons
- II. Nuclear extended charge distribution which is relevant for high energy electrons

Mott Polarimeter Optimization

 Statistical error of polarization measurement is proportional to inverse of Figure of Merit (fom),

$$fom(\theta) = I(\theta) \times S(\theta)^2$$

The goal is to maximize fom

• The detector rate (R) is

$$R(\theta) = I(\theta)\rho_{Au}d_{foil}\frac{N_A}{M_{Au}}\frac{I_{beam}}{e^-}\Delta\Omega$$

Measuring Mott Asymmetry

- How to measure the Mott Asymmetry A_{IR} ?
 - For one helicity state, measure the number of left and right E detector events, N_L^{\uparrow} and N_R^{\uparrow}
 - Flip the electron polarization, measure the number of events again, N_L^{\downarrow} and N_R^{\downarrow}
 - Calculate the *cross-ratio* (r),

$$r = \sqrt{\frac{N_L^{\uparrow} N_R^{\downarrow}}{N_L^{\downarrow} N_R^{\uparrow}}}$$

Then, the Mott Asymmetry (A),

$$A_{LR} = \frac{1 - r}{1 + r} \qquad P = \frac{A_{LR}}{S}$$

$$P = \frac{A_{LR}}{S}$$

- The same for A_{UD}
- This cancels false asymmetries from detector efficiency, beam current, target thickness, and solid angle
- Dead time is caused by slow DAQ and is common to all detectors cancels to all orders

Statistical Uncertainty

$$(\Delta A)^{2} = \frac{r^{2}}{(1+r)^{4}} \left[\left(\frac{\Delta N_{L}^{\uparrow}}{N_{L}^{\uparrow}} \right)^{2} + \left(\frac{\Delta N_{L}^{\downarrow}}{N_{L}^{\downarrow}} \right)^{2} + \left(\frac{\Delta N_{R}^{\uparrow}}{N_{R}^{\uparrow}} \right)^{2} + \left(\frac{\Delta N_{R}^{\downarrow}}{N_{R}^{\downarrow}} \right)^{2} \right]$$

With the approximation,

$$N=N_L^{\uparrow}=N_R^{\downarrow}=N_R^{\uparrow}=N_L^{\downarrow}$$

Error simplifies to

$$\Delta A = \sqrt{\frac{1}{4N}}$$

$$\Delta A = \sqrt{\frac{1}{4N}}$$

$$N = \frac{1}{4(\Delta A)^2}$$

Time needed to measure beam polarization of P to statistical error of $\Delta P/P$ is

$$T = \frac{2N}{R} = \frac{1}{2R(\Delta A)^2} = \frac{1}{2R(\Delta P \cdot S(\theta))^2} = \frac{1}{2\Delta P^2 \cdot fom}$$

Sherman Function and Target Thickness

• Single-Atom Sherman Function $S_{SA}(\theta)$ must be corrected for plural scattering (a few large angle scattering) in the target:

$$S_{eff}(\theta, d) = \frac{S_{SA}(\theta)}{1 + \alpha(\theta) \cdot d}$$

- alpha = 0.3/um for 5 MeV electrons. Depends on electron energy and may depend on scattering angle
- Run with the thinnest target

 $fom(\theta,d) = I(\theta) \cdot S_{eff}(\theta,d)^2 \cdot d$

Sherman Function Sensitivity to Energy and Angle

Three Targets (Z=29, 47,79)

Corrections to Measured Asymmetry

Background

- I. Shielding and Collimation
- II. Coincidence, Time-of-flight
- Or ... Subtract background:

$$N_L^{\uparrow} = (N_L^{\uparrow})_{raw} - br_L^{\uparrow}$$

$$\left(\frac{\Delta N_L^{\uparrow}}{N_L^{\uparrow}}\right)^2 = \frac{\left(N_L^{\uparrow}\right)_{raw} + br_L^{\uparrow}}{\left(N_L^{\uparrow}\right)^2}$$

II. Target Thickness:

 Single-Atom Sherman Function must be corrected for plural scattering (a few large angle scattering) in target:

$$S(d) \cong \frac{S_{SA}(0)}{1 + \alpha \cdot d}$$

- \circ S_{SA}(0) = -0.5215, S(1.0 μ m) = -0.4006
- o If possible, run with the thinnest target

5 MeV Mott Beamline

Detector Assembly

New ΔE and E Detectors are Ready

- H7415 (R6427) 1" PMT
- 1 mm x 1" x 1" EJ-212 Plastic Scintillator
- 0.125" x 1" x 2" Acrylic Light Guide

- H6559 (R6091) 3" PMT
- 3" diameter x 2.5" long EJ-200 Plastic Scintillator painted with EJ-510

ΔE and E Signals

Old 5 MeV Mott DAQ

- LeCroy CAMAC 4303 Time-to-FERA Converter (TFC)
- LeCroy CAMAC 4300B Fast Encoding and Readout ADC (FERA), 10 Bit
- ORTEC CAMAC HM 413 HISTO-MEMORY

Detectors Spectra

LEFT_∆E -

RIGHT_AE -

UP_∆E -

DOWN_AE -

E Detectors Spectra

Mott Asymmetries

$$-A_{UD} = 33.98 \pm 0.36 \%$$

$$-A_{LR} = -2.11 \pm 0.44 \%$$

- UD Instrumental (Detector Efficiency and Solid Angle) A1 = 12.91 ± 0.40 %
- LR Instrumental (Detector Efficiency and Solid Angle) A1 = -3.78 ± 0.44 %

- LR Instrumental (Beam Current and Target Thickness) A2 = -0.75 ± 0.44 %

Bin Cut

Bin Cut

New DAQ for Mott Polarimeter

- Will record the pulse shape and timing of detected electrons
- No Dead Time ... will be able to run at higher beam current
- Can process delayed helicity reporting and measure time-offlight of detected electrons
- Consists of:
 - CODA (CEBAF Online Data Acquisition)
 - Hardware:
 - VME64x Backplane 6U Crate
 - Motorola MVME6100
 - JLab Flash ADC: 16 channel, 12 bit, 250 MS/s
 - SIS 3801 Scaler: Beam current and position
 - CAEN V775 TDC: BFM

DAQ Schematic Diagram

Detector Signals to fADC (Parasitic to old DAQ)

Helicity Signals

FADC Signals

FADC Chan	Signal
0	E LEFT
1	E RIGHT
2	E UP
3	E DOWN
4	ΔE LEFT
5	ΔE RIGHT
6	ΔE UP
7	ΔE DOWN
8	BFM
9	
10	Mott Trigger
11	
12	Delayed Helicity
13	T_Settle
14	Pattern-Sync
15	Pair-Sync

Few FADC Events in LEFT Detector

Calculate pedestal and Energy:

$$Pedestal = \frac{1}{5} \sum_{sample=60}^{64} ADC$$

$$E = \sum_{sample=60}^{97} ADC - 38 \times Pedestal$$

Energy Resolution=2.7% (same as old DAQ)

Pedestal Resolution

Energy
Resolution=2.4%
(after Pedestal
Correction)

Mott Asymmetry

Data with Old DAQ

IHWP	FILE	P_V	P_X
OUT	16Feb12 08:30:41	86.9 +/- 1.1 (stat)	1.6 +/- 1.2 (stat)
IN	16Feb12 08:36:18	-87.3 +/- 1.1 (stat)	-2.7 +/- 1.1 (stat)
OUT	16Feb12 08:54:56	86.3 +/- 1.1 (stat)	2.7 +/- 1.2 (stat)
IN	16Feb12 08:54:56	-85.7 +/- 1.1 (stat)	-4.1 +/- 1.1 (stat)
AVERAGE		86.6 +/- 0.6 (stat)	2.8 +/- 0.6 (stat)

Simultaneous Data with New DAQ

Difference due to different energy cuts in analysis

IHWP	Run #	P_V	P_X
OUT	2652	86.4 +/- 1.1 (stat)	0.6 +/- 1.2 (stat)
IN	2653	-85.6 +/- 1.0 (stat)	-3.4 +/- 1.1 (stat)
OUT	2654	85.2 +/- 1.1 (stat)	2.4 +/- 1.2 (stat)
IN	2655	-85.6 +/- 1.0 (stat)	-3.0 +/- 1.0 (stat)
AVERAGE		85.7 +/- 0.5 (stat)	2.4 +/- 0.6 (stat)

BFM Signal

BFM after -145 mV discrimination (TDC)

BFM in FADC

Hall C 499 MHz Beam

499 MHz Beam

Hall B and Hall C beams at 499 MHz

5 MeV Mott Beam-line

31 MHz Beam

Here, "E" is the peak of Energy signal (sample=74)

Mott Sweep Magnet at -5A

Mott Sweep Magnet at 0A

Mott Sweep Magnet at +5A

Spectra from Broken Gold Mott Target

Mainly Dump Events

Mott Asymmetry vs. Energy

Select events coming from target with a cut on TOF

Mott Asymmetry vs. TOF

Scaler Readout

S1 Chan	Signal
0	BCM0L02 OUTPUT 2
1	40 MHz Clock
2	Mott Trigger
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	BCM0L02 OUTPUT 3
13	Delayed Helicity
14	Battery
15	

BCM0L02 Readout

- I. BCM0L02 Receiver output:
 - 1. OUTPUT 2: $0.0 1.0 \,\mu\text{A} \rightarrow 0 10 \,\text{V}$
- II. Connected to VtoF (1 MHz, 10 V)

III. Charge Asymmetry Test:

- PITA (Polarization Induced Transport Asymmetry): charge asymmetry depends on Pockels Cell HV
- Experiments use PITA to implement charge feedback
- Measure PITA slope at PITA = -2000, 0, +2000 DAC (Nominal 40000 about 2.9 kV on Pockels Cell).
- \circ Measure PITA Slope for beam currents: 1.0 μA, 0.108 μA, 0.040 μA, and 0.008 μA

Charge Asymmetry Test

- > 30 Hz
- 8-window Delay
- Quartet

PITA Scan at 1.0 µA

- Mott DAQ
 - I. PITA Slope = -1.02 ppm/DAC
- QWeak DAQ
 - I. PITA Slope = -1.06 ppm/DAC

PITA at 0.108 μA

- Mott DAQ
 - I. PITA Slope = -1.05 ppm/DAC

PITA at $0.040 \mu A$

- Mott DAQ
 - I. PITA Slope = -1.1 ppm/DAC

PITA at $0.008 \mu A$

Overwhelmed by noise

Now, reliable charge asymmetry measurement to about 40 nA

Next, ...

- I. Calibrate Receiver to 100 nA FS
- II. Measure charge asymmetry at 10 nA
- III. For even lower beam currents:
 - Measure charge asymmetry at 1 μA and at 10 nA → We know charge asymmetry at all currents