5 MeV Mott Polarimeter Progress

April 10, 2012

Outline

- Mott Scattering: Cross Section and Sherman Function
- Measuring Mott Asymmetry
- Mott Detectors
- Data Acquisition
- Analysis
- Charge Asymmetry

Mott Scattering

- Electron motion in the electric field of nucleus results in magnetic field in electron rest frame, $\vec{B}=-\frac{1}{c} \vec{V} \times \vec{E}$, if \vec{r} is nucleus-electron separation, then $\vec{E}=\frac{Z e}{r^{3}} \vec{r}$ and

$$
\vec{B}=\frac{Z e}{c r^{3}} \vec{r} \times \vec{v}=\frac{Z e}{m c r^{3}} \vec{L}
$$

- Interaction of this magnetic field with electron (spin) magnetic moment introduces a term $V_{s o}=-\vec{\mu}_{s} \bullet \vec{L}$ in the scattering potential,

$$
V=V_{c}+V_{s o}=\frac{Z e}{r}+\frac{Z e^{2}}{2 m^{2} c^{2} r^{3}} \vec{L} \bullet \vec{S}
$$

- Presence of spin-orbit term in scattering potential introduces spin dependence in scattering cross section $\sigma(\theta)$ which could be detected as a left/right count rate asymmetry

Note:

- Parity-conserving: Measure spin-momentum correlation of the type: $\vec{S} .\left(\vec{k}_{1} \times \vec{k}_{2}\right)$ Transverse (or Normal) Beam Asymmetry measured recently using the setup of parityviolating experiments at high energies (due to two-photon exchange) probes the same spin-momentum correlation as Mott Asymmetry at low energies (due to spin-orbit interaction of electron moving in a Coulomb field).
- Parity-violating: Measure spin-momentum correlation of the type:

Mott Cross Section and Sherman Function

- Mott cross section:

$$
\sigma(\theta)=I(\theta)[1+S(\theta) \vec{P} \bullet \hat{n}]
$$

where, $I(\theta)$ is the un-polarized cross section,

$$
I(\theta)=\left(\frac{\hbar c}{p}\right)^{2}\left[\left(\frac{Z e^{2}}{\hbar c \beta}\right)^{2}\left(1-\beta^{2}\right) \frac{|F(\theta)|^{2}}{\sin ^{2}(\theta / 2)}+\frac{|G(\theta)|^{2}}{\cos ^{2}(\theta / 2)}\right]
$$

and $S(\theta)$ is the analyzing power (Sherman Function),

$$
S(\theta)=2 \times\left(\frac{\hbar c}{p}\right)^{2}\left(\frac{Z e^{2}}{\hbar c \beta}\right) \frac{\sqrt{1-\beta^{2}}}{\sin (\theta / 2) I(\theta)}\left[F(\theta) G^{*}(\theta)+F^{*}(\theta) G(\theta)\right]
$$

- The Sherman Function is largest for high-Z (Gold, $Z=79$) targets and lowenergy electrons

- Theoretical corrections to Sherman Function:
I. Screening by atomic electrons which is relevant for low energy electrons
II. Nuclear extended charge distribution which is relevant for high energy electrons

Mott Polarimeter Optimization

- Statistical error of polarization measurement is proportional to inverse of Figure of Merit (fom),

$$
\operatorname{fom}(\theta)=I(\theta) \times S(\theta)^{2}
$$

The goal is to maximize fom

- The detector rate (R) is

$$
R(\theta)=I(\theta) \rho_{A u} d_{\text {foil }} \frac{N_{A}}{M_{A u}} \frac{I_{\text {beam }}}{e^{-}} \Delta \Omega
$$

Measuring Mott Asymmetry

- How to measure the Mott Asymmetry $A_{L R}$?
- For one helicity state, measure the number of left and right E detector events, N_{L}^{\uparrow} and N_{R}^{\uparrow}
- Flip the electron polarization, measure the number of events again, N_{L}^{\downarrow} and N_{R}^{\downarrow}
- Calculate the cross-ratio (r),

$$
r=\sqrt{\frac{N_{L}^{\uparrow} N_{R}^{\downarrow}}{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

- Then, the Mott Asymmetry (A),

$$
A_{L R}=\frac{1-r}{1+r} \quad P=\frac{A_{L R}}{S}
$$

- The same for $\mathrm{A}_{\text {UD }}$
- This cancels false asymmetries from detector efficiency, beam current, target thickness, and solid angle
- Dead time is caused by slow DAQ and is common to all detectors - cancels to all orders

Statistical Uncertainty

$$
(\Delta A)^{2}=\frac{r^{2}}{(1+r)^{4}}\left[\left(\frac{\Delta N_{L}^{\uparrow}}{N_{L}^{\uparrow}}\right)^{2}+\left(\frac{\Delta N_{L}^{\downarrow}}{N_{L}^{\downarrow}}\right)^{2}+\left(\frac{\Delta N_{R}^{\uparrow}}{N_{R}^{\uparrow}}\right)^{2}+\left(\frac{\Delta N_{R}^{\downarrow}}{N_{R}^{\downarrow}}\right)^{2}\right]
$$

- With the approximation,
$N=N_{L}^{\uparrow}=N_{R}^{\downarrow}=N_{R}^{\uparrow}=N_{L}^{\downarrow}$
Error simplifies to

$$
\Delta A=\sqrt{\frac{1}{4 N}}
$$

$$
N=\frac{1}{4(\Delta A)^{2}}
$$

- Time needed to measure beam polarization of P to statistical error of $\triangle P / P$ is

$$
T=\frac{2 N}{R}=\frac{1}{2 R(\Delta A)^{2}}=\frac{1}{2 R(\Delta P \cdot S(\theta))^{2}}=\frac{1}{2 \Delta P^{2} \cdot \mathrm{fom}}
$$

Sherman Function and Target Thickness

$$
P=\frac{A}{S_{e f f}(\theta)}
$$

- Single-Atom Sherman Function $S_{S A}(\theta)$ must be corrected for plural scattering (a few large angle scattering) in the target:

$$
S_{e f f}(\theta, d)=\frac{S_{S A}(\theta)}{1+\alpha(\theta) \cdot d}
$$

- alpha $=0.3 / \mathrm{um}$ for 5 MeV electrons. Depends on electron energy and may depend on scattering angle
- $\|$ Run with the thinnest target

fom $(\theta, d)=$

$$
I(\theta) \cdot S_{e f f}(\theta, d)^{2} \cdot d
$$

Sherman Function Sensitivity to Energy and Angle

Three Targets (Z=29, 47,79)

Corrections to Measured Asymmetry

I. Background

I. Shielding and Collimation
II. Coincidence, Time-of-flight

Or ... Subtract background: $N_{L}^{\uparrow}=\left(N_{L}^{\uparrow}\right)_{\text {raw }}-b r_{L}^{\uparrow}$

$$
\left(\frac{\Delta N_{L}^{\uparrow}}{N_{L}^{\uparrow}}\right)^{2}=\frac{\left(N_{L}^{\uparrow}\right)_{r a w}+b r_{L}^{\uparrow}}{\left(N_{L}^{\uparrow}\right)^{2}}
$$

II. Target Thickness:

- Single-Atom Sherman Function must be corrected for plural scattering (a few large angle scattering) in target:

$$
S(d) \cong \frac{S_{S A}(0)}{1+\alpha \cdot d}
$$

- $\quad S_{S A}(0)=-0.5215, S(1.0 \mu \mathrm{~m})=-0.4006$
- If possible, run with the thinnest target

5 MeV Mott Beamline

Detector Assembly

I. Scattering Angle $=172.6^{\circ}$
II. Solid Angle $=0.18 \mathrm{msr}$

New ΔE and E Detectors are Ready

- H7415 (R6427) 1" PMT
- 1 mm x 1" \times 1" EJ-212 Plastic Scintillator
- 0.125 " x 1" x 2" Acrylic Light Guide

- H6559 (R6091) 3" PMT
- 3" diameter x 2.5" long EJ-200

Plastic Scintillator painted with EJ-510

ΔE and E Signals

Old 5 MeV Mott DAQ

- LeCroy CAMAC 4303 Time-to-FERA Converter (TFC)
- LeCroy CAMAC 4300B Fast Encoding and Readout ADC (FERA), 10 Bit
- ORTEC CAMAC HM 413 HISTO-MEMORY

Detectors Spectra

LEFT_E +

RIGHT_E +

 DOWN_E +

RIGHT_E-

RIGHT_ ΔE -

- Beam Current $=0.5 \mu \mathrm{~A}$
- Gold Target $1.0 \mu \mathrm{~m}$
- Trigger Rate 1 kHz
- 5 minutes of data

E Detectors Spectra

Mott Asymmetries

New DAQ for Mott Polarimeter

- Will record the pulse shape and timing of detected electrons
- No Dead Time ... will be able to run at higher beam current
- Can process delayed helicity reporting and measure time-offlight of detected electrons
- Consists of:
- CODA (CEBAF Online Data Acquisition)
- Hardware:
- VME64x Backplane 6U Crate
- Motorola MVME6100
- JLab Flash ADC: 16 channel, 12 bit, 250 MS/s
- SIS 3801 Scaler: Beam current and position
- CAEN V775 TDC: BFM

DAQ Schematic Diagram

Detector Signals to fADC (Parasitic to old DAQ)

Helicity Signals

FADC Signals

FADC Chan	Signal
0	E LEFT
1	E RIGHT
2	E UP
3	E DOWN
4	$\Delta \mathrm{E}$ LEFT
5	$\Delta \mathrm{E}$ RIGHT
6	$\triangle E$ UP
7	\triangle E DOWN
8	BFM
9	
10	Mott Trigger
11	
12	Delayed Helicity
13	T_Settle
14	Pattern-Sync
15	Pair-Sync

Calculate pedestal and Energy:

$$
\begin{aligned}
& \text { Pedestal }=\frac{1}{5} \sum_{\text {sample } 60}^{64} A D C \\
& E=\sum_{\text {sample } 60}^{97} A D C-38 \times \text { Pedestal }
\end{aligned}
$$

Energy

 Resolution=2.7\% (same as old DAQ)

Pedestal Resolution

Mott Asymmetry

BFM Signal

Hall C 499 MHz Beam

499 MHz Beam

Hall B and Hall C beams at 499 MHz

5 MeV Mott Beam-line

31 MHz Beam

Here, " E " is the peak of Energy signal (sample=74)

Mott Sweep Magnet at -5A

Mott Sweep Magnet at 0A

Mott Sweep Magnet at +5A

Spectra from Broken Gold Mott Target

 Mainly Dump Events

Mott Asymmetry vs. Energy

Select events coming from target with a cut on TOF

Mott Asymmetry vs. TOF

Scaler Readout

BCMOL02 Readout

I. BCMOL02 Receiver output:

1. OUTPUT 2: $0.0-1.0 \mu \mathrm{~A} \rightarrow 0-10 \mathrm{~V}$
II. Connected to VtoF ($1 \mathrm{MHz}, 10 \mathrm{~V}$)
III. Charge Asymmetry Test:

- PITA (Polarization Induced Transport Asymmetry): charge asymmetry depends on Pockels Cell HV
- Experiments use PITA to implement charge feedback
- Measure PITA slope at PITA $=-2000,0,+2000$ DAC (Nominal $40000-$ about 2.9 kV on Pockels Cell).
- Measure PITA Slope for beam currents: $1.0 \mu \mathrm{~A}, 0.108 \mu \mathrm{~A}, 0.040 \mu \mathrm{~A}$, and $0.008 \mu \mathrm{~A}$

Charge Asymmetry Test

$>30 \mathrm{~Hz}$
> 8-window Delay
$>$ Quartet

PITA Scan at $1.0 \mu \mathrm{~A}$

$>$ Mott DAQ
I. PITA Slope $=-1.02 \mathrm{ppm} / \mathrm{DAC}$
> QWeak DAQ
I. PITA Slope $=-1.06 \mathrm{ppm} / \mathrm{DAC}$

PITA at $0.108 \mu \mathrm{~A}$

> Mott DAQ
I. PITA Slope $=-1.05 \mathrm{ppm} / \mathrm{DAC}$

PITA at $0.040 \mu \mathrm{~A}$

$>$ Mott DAQ
I. PITA Slope $=-1.1 \mathrm{ppm} / \mathrm{DAC}$

PITA at $0.008 \mu \mathrm{~A}$

> Overwhelmed by noise

$>$ Now, reliable charge asymmetry measurement to about 40 nA

Next, ...
I. Calibrate Receiver to 100 nA FS
II. Measure charge asymmetry at 10 nA III. For even lower beam currents:
I. Measure charge asymmetry at $1 \mu \mathrm{~A}$ and at $10 \mathrm{nA} \rightarrow$ We know charge asymmetry at all currents

