${ }^{19} \mathrm{~F}(\gamma, \alpha){ }^{15} \mathrm{~N}$ Rates

Seamus Riordan
seamus@anl.gov

Argonne

November 30, 2017

Overview

- Developed new code to calcuate ${ }^{19} \mathrm{~F}(\gamma, \alpha){ }^{15} \mathrm{~N}$ rates from scratch
- Comparing to presentation made in March 2016 with similar goals
- Geometry could be improved
- Have a bunch of questions - let me know where refinement can be done

Simulation

- Starting with very basic G4 from scratch based on geometry
- Just radiator and apertures
- Photons required to come from inside target - cutting everything else for simplicity

- Matching G4 $T_{e}=5 \mathrm{MeV}$ to Schiff formula
- G4 visually agrees well with previous G4
- Overall scaling of my Schiff off by $\times 3-4$ - geometrical?
- Schiff used for remainder of calculations

Simulation

- Also tracks with lower energy ($T=4.5 \mathrm{MeV}$)

Cross Section

${ }^{19} \mathrm{~F}(\gamma, \alpha){ }^{15} \mathrm{~N}$ Cross Section

- Cross section used from table provided on wiki
- Using logarithmic-y linear-x interpolation due to extreme variation

Rate vs T_{e}

- Convoluting cross section with Brem spectrum
- ROOT is doing numerical integration - defaults to adaptive QAG method

- Some differences in structure washed out in previous analysis?
- Absolute rates are a bit lower in mine

Unfolding

- Using simplest unfolding algorithm
- Electron energies evenly spaced by Δ
- Using bin centers as photon number calculation points

$$
\begin{aligned}
Y_{i} & \approx \sum_{j} N_{\gamma}\left(T_{i}^{e}, E_{j}^{\gamma}\right) \sigma\left(E_{j}^{\gamma}\right) \\
& =\sum_{j} N_{i j} \sigma_{j}
\end{aligned}
$$

with $E_{j}^{\gamma}=T_{i}^{e}-\left(i-j+\frac{1}{2}\right) \Delta$

- Measured cross section $\bar{\sigma}_{j}$ for E_{j}^{γ}

$$
\bar{\sigma}_{j}=B_{j i} Y_{i}=N_{j i}^{-1} Y_{i}
$$

Trial Run Plan

- Solved for constant $d \sigma / \sigma$, but assuming little cross section variation
- Plan can be tweaked given variation
- Total run time about 1 week
- Rates all less than 400 counts/hour
- Not including backgrounds yet

T	E_{γ}	$\mathrm{I}(\mu \mathrm{A})$	$\mathrm{t}(\mathrm{h})$	Yield	$d \sigma / \sigma$
4.80	4.75	50.0	100	1641	3.7
4.90	4.85	20.3	40	1669	8.7
5.00	4.95	8.5	17	1834	8.1
5.10	5.05	3.7	7	1954	8.1
5.20	5.15	1.4	5	1935	8.1
5.30	5.25	0.4	5	2033	6.7
			174		

Quoted cross section concerns

- Cross section varies quickly question about what cross section quoted means
- First and last bins are pulled by nearby resonance
- First and last have $\bar{\sigma}\left(E_{i}\right)$ 50-70\% different from $\sigma\left(E_{i}\right)$
- Rest are $\sim 5-10 \%$ level

Quoted cross section concerns ii

Counts vs E_{γ}

- Median energy for convoluated rate about equal to bin center - evenly spaced

Summary and To Do

- Put together machinery for calculating rates and doing unfolding
- Some differences from previous analysis need to be addressed
- Geometry should be finalized
- Photon spectrum from G4 should be compared over broader energy
- Question on cross section to quote and nearby resonance effects
- Backgrounds need to be included

Running Pressures/Temperatures

