Darklight Onesie 1c at the CEBAF injector

Jan C. Bernauer

April 11, 2018

Massachusetts Institute of Technology

Many images from arXiv:1707.09749

 ^{8}Be is special: two narrow, highly energetic states which can decay to ground state via E/M

Decay modes of ${}^{8}Be(18.15)$

Hadronic, electromagnetic and through internal pair conversion

The Atomkin experiment

1.04 MeV proton beam on ⁷Li to ⁸Be(18.15) + γ . Followed by decay. Looked at e^{\pm} pairs from internal conversion.

The beryllium anomaly

- This model has $\chi^2/d.o.f.$ of 1.07, significance of 6.8 σ
- Bump, not last bin effect
- Rises/falls when scanning through proton energies around resonance
- Excess only happens for symmetric-energy pairs
- Preliminary reports of same excess in ⁸Be(17.6) (same group)

- Group has a history of finding peaks
- $\bullet\,$ IIUC, the detector acceptance has a minimum at $140^\circ\,$
- DM boson interpretation is proto-phobic to evade NA48/2 limits

• Actually: $\frac{\epsilon_p}{\epsilon_n}$ coupling below $\pm 8\%$. Z⁰ is $\sim 7\%$

In DarkLight, production is via Bremsstrahlung, predominantly ISR off the electron. We can look at $e^-p \rightarrow e^-pX$, followed by $X \rightarrow e^-p(e^-e^+)$ Irreducible background: $e^-p \rightarrow e^-p\gamma^* \rightarrow e^-pe^+e^-$ In DarkLight, production is via Bremsstrahlung, predominantly ISR off the electron. We can look at $e^-p \rightarrow e^-pX$, followed by $X \rightarrow e^-p(e^-e^+)$ Irreducible background: $e^-p \rightarrow e^-p\gamma^* \rightarrow e^-pe^+e^-$ Best kinematics:

- highest production rate if X takes all electron energy.
 CS rise beats all
- with limited out-of-plane acceptance, symmetric angle optimal

- Replace hydrogen target with tantalum. Point like, and more luminosity
- Main background is NOT the irreducible one. Random coincidences between
 - radiative elastic electrons
 - positrons from (virtual) photon pair-production where e⁻ is missed
- Can optimize by moving electron arm backward

- 45 MeV beam, 150 μ A on 10 μ m tantalum foil —about 0.3 inv. fb/s hydrogen equivalent
- Positron spectrometer at 16°, 28 MeV
- Electron spectrometer at 33.5°, 15 MeV

Kinematic var.	Acc.	Inv. mass res.	est. res. on focal plane	Error
in-plane angle	±2°	22 <u>keV</u> mrad	5mm/7cm→1.4 mrad	32 keV
out-of-plane angle	$\pm 5^{\circ}$	5 <u>keV</u> mrad	1° and 1.14° \rightarrow 1.5°	133 <i>keV</i>
momentum	±20%	85 <u>keV</u>	5mm/30cm→< 0.2%	17 keV

Sum for two spec: 194 keV, assumed 250 keV

QED irreducible: 55 Hz coincidences,

QED irreducible: 55 Hz coincidences, ... but 120 kHz e⁺ singles

QED irreducible: 55 Hz coincidences, ... but 120 kHz e⁺ singles Elastic e⁻ + internal Bremsstrahlung: 6 MHz → Random coincidence rate 500 Hz (at 1.5 GHz bunch rate) This is the minimum trigger rate and sets the sensitivity.

Counting rates: Backgrounds

- Random coincidences dominate
- Scaling with instantaneous luminosity:
 - Signal S ~ \mathcal{L}
 - QED background Q ~ \mathcal{L}
 - Accidental background A ~ \mathcal{L}^2

• Sensitivity
$$\frac{S}{\sqrt{Q+A}} \sim 1$$

- Random coincidences dominate
- Scaling with instantaneous luminosity:
 - Signal S ~ \mathcal{L}
 - QED background Q ~ \mathcal{L}
 - Accidental background A ~ \mathcal{L}^2

• Sensitivity
$$\frac{S}{\sqrt{Q+A}} \sim 1$$

 Sensitivity almost independent of luminosity. Scale is set by bunch-clock / time resolution

Space requirements

Reach

- Reach plot assumes that we can associate tracks to bunches on the 1.5 GHz level.
 Fast trigger detectors!
- Need to study more background sources, but I think we have most.
- 1c can/should be test platform for streaming readout. What approach works best?