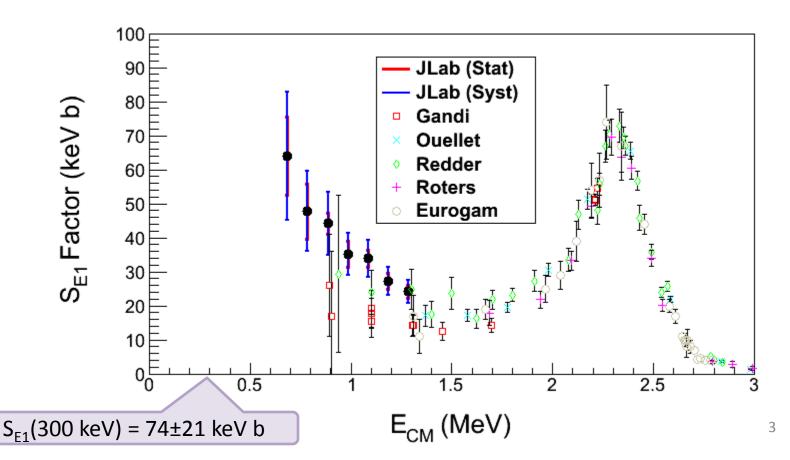
Bubble Chamber Planning Meeting


24 July 2013

Agenda

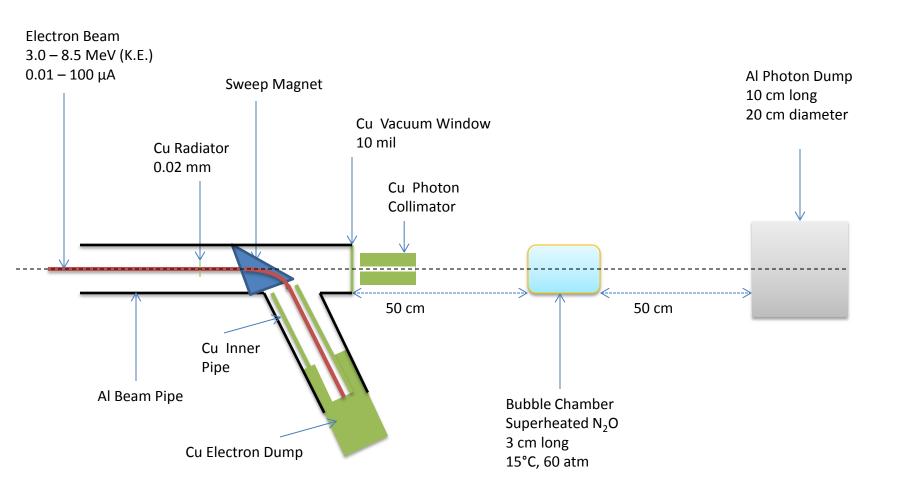
- 1. Schedule
- 2. Design of beamline, radiator and dump
- 3. Bubble Chamber work at Argonne
- 4. Simulation and Background
- 5. Absolute beam energy
- 6. Safety

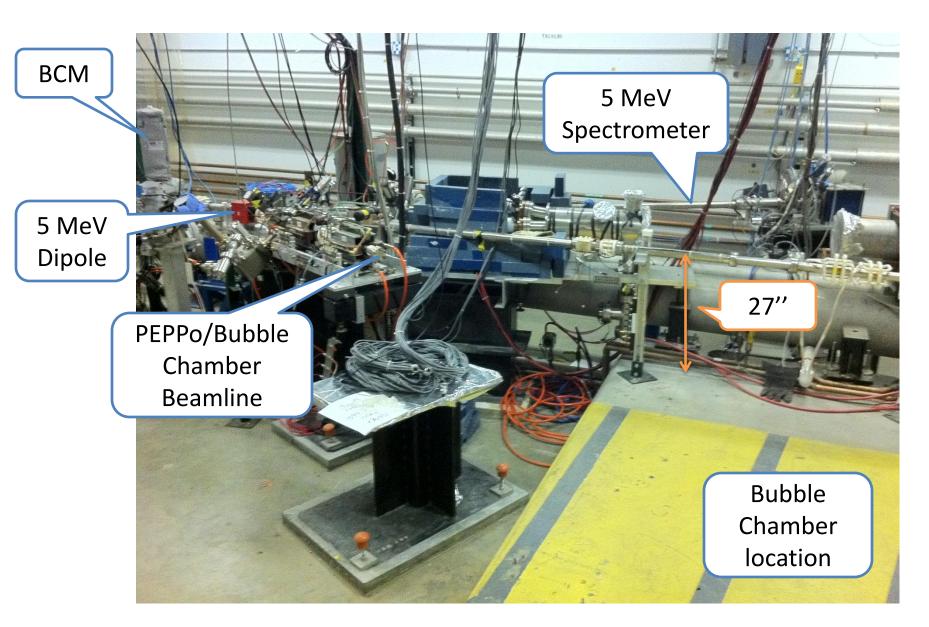
$^{12}\text{C}(\alpha, \gamma)^{16}\text{O S-Factor}$

- > Statistical Error: dominated by background subtraction from $^{18}O(\gamma,\alpha)^{14}C$ (depletion = 5,000)
- Systematic Error: dominated by absolute beam energy (= 0.2%)

Schedule

➤ 12GeV CEBAF Commissioning:


	Start	End
Period I	2013-11-04	2013-12-20
SADI	2014-01-02	2014-02-05
Period II	2014-02-05	2014-05-07
SAD II	2014-05-07	2014-09-22
Period III	2014-09-22	2014-12-19
SAD III	2015-01-02	2015-02-13
Period IV	2015-02-13	2015-06-12


> Bubble Chamber Activities:

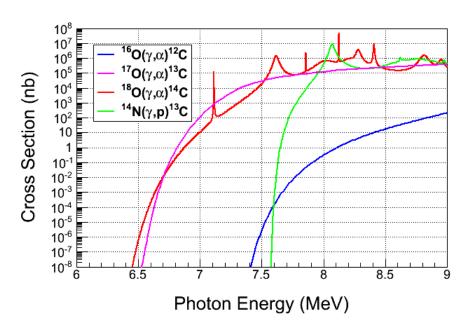
- Install beamline, radiator and dump
- > Commission beamline, radiator and dump
- Install Bubble Chamber
- Commission Bubble Chamber
- > Physics run

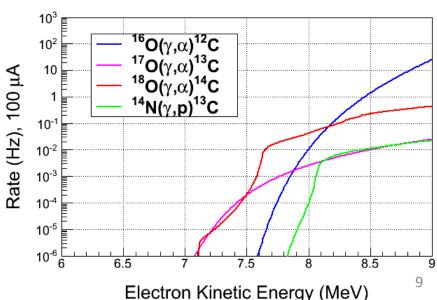
Design of beamline, Radiator & Dump

- ➤ Add BPM to the 5 MeV Spectrometer line
- Need to design new beamline to replace PEPPo beamline and increase the distance between the two BPMs
- > Radiator: 0.02 mm and 0.1 mm Copper
- > Electron Dump: 2kW dump (10 MeV, 200 μA)
- Photon Dump

Simulation

- Two programs:
 - I. GEANT4
 - II. FLUKA
- ➤ Both use models that calculate wrong cross sections. Both do not allow for user's cross sections. Suggestion:
 - I. Use GEANT4 and FLUKA to produce the photon spectrum impinging on the super heated liquid.
 - II. Fold the above photon spectrum with our cross sections in stand-alone codes.
- ➤ Both GEANT4 and FLUKA are good in neutron tracking. Still need to check the neutron cross sections.


Background


- Must measure:
 - I. $^{17}O(\gamma,\alpha)^{13}C$, enrichment=10%
 - II. $^{18}O(\gamma,\alpha)^{14}C$, enrichment=10%
- Rates:
 - I. $^{17}O(\gamma,\alpha)^{13}C$, depletion=5,000
 - II. $^{18}O(\gamma,\alpha)^{14}C$, depletion=5,000
 - III. $^{14}N(\gamma,p)^{13}C$, detection eff.= 10^{-8}

Natural Abundance:

- I. ¹⁷O: 0.038%
- II. ¹⁸O: 0.205%

Safety

➤ High pressure system

➤ Super heated liquid: N₂O or CO₂

➤ Buffer liquid: Mercury

Running in FEL?

➤ Absolute Beam Energy: FEL can measure the energy with a precision of 0.4%. However, it could be very hard to improve (?)

Required Systems:

- I. Personnel Safety System (PSS)
- II. Liquid helium and RF
- III. Gun Laser

IV. Staff

Planning Meeting

> Do we want to meet every two weeks?

Wednesday 3:00 – 5:00 pm?