EDM Measurement in Small Rings

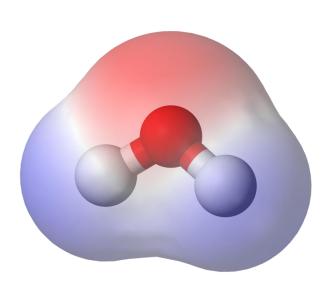
HighPrecisionFundamentalPhysicsExperimentsUsingCompactStorageRingsofLowEnergyPolarizedElectronBeams

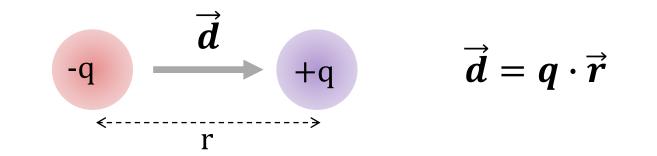
https://arxiv.org/abs/2105.11575

R. Suleiman, V. S. Morozov, and Ya. S. Derbenev

Outline

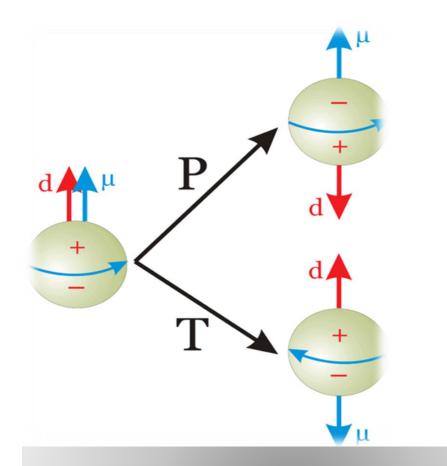
- Motivation: EDM, CP Violation, and Matter-Antimatter Asymmetry
- EDM Searches in Storage Rings
- Spin-Transparent Storage Ring and EDM Precession Rate
- Electron EDM Ring Details:
 - Ring Optics Design
 - Intra-Beam Scattering and Stochastic Cooling
 - Beam Lifetime and Spin Coherence Time
- Polarized Electron Source and Electron Polarimetry
- Statistical and Systematic Uncertainties
- Dark Matter and Dark Energy Searches
- Spin-Transparency and Proton EDM Search
- Summary




Motivation

Electric Dipole Moment (EDM)

<u>Definition</u>: Permanent spatial separation of positive and negative charge distributions


• Example: water molecule has large permanent EDM because of degenerate ground state with different parity (does not violate parity; not a parity eigenstate):

$$d_{H_20} \sim 6.15 \times 10^{-30} \text{ C} \cdot \text{m} \sim 3.84 \times 10^{-9} \text{ e} \cdot \text{cm}$$

 This not true for elementrary particles (electron, proton, ...): existance of permanant EDM violates both Time-reversal (T) and Parity (P) symmetries. Assuming CPT invariance (combined symmetry over C-charge-conjugation, P-parity and T-time), T and P violations imply CP violation

T and **P** Violation of Permanent EDM

Permanent EDMs of elementary particles violate both P and T symmetry, therefore CP must be violated

 \vec{d} : EDM (aligned with spin)

$$\vec{d} = \frac{\eta}{2} \frac{q\hbar}{mc} \vec{S}$$

 $\vec{\mu}$: Magnetic Dipole Moment

 $\vec{\mu} = \frac{g}{2} \frac{q\hbar}{mc} \vec{S}$

Anomalous magnetic moment: $G = \frac{g-2}{2}$

Spin precession for particle at rest ($\vec{v} = 0$):

$$\frac{d\vec{S}}{dt} = \frac{e\hbar}{mc} \left((G+1)\vec{S} \times \vec{B} + \frac{\eta}{2}\vec{S} \times \vec{E} \right)$$

$$P \qquad \vec{E} \to -\vec{E}, \qquad \vec{B} \to +\vec{B}, \qquad \vec{S} \to +\vec{S}$$
$$T \qquad \vec{E} \to +\vec{E}, \qquad \vec{B} \to -\vec{B}, \qquad \vec{S} \to -\vec{S}$$

EDM Physics Motivation

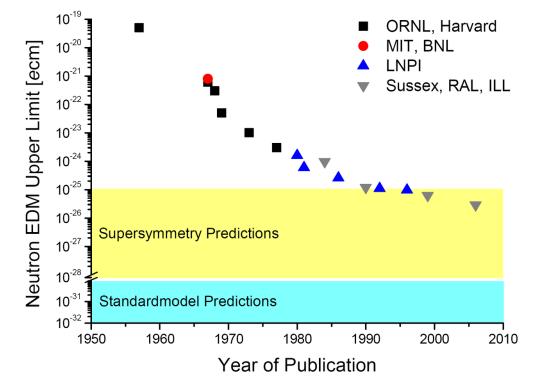
- Standard Model has two explicit CP-violating parameters:
 - Complex phase appears in the Cabibbo–Kobayashi–Maskawa (CKM) matrix parametrizing quark weak interaction
 - $\bar{\theta}_{\rm QCD}$, coefficient of an allowed CP-violating term in Quantum Chromo-Dynamics (QCD) Lagrangian
- CKM contribution to EDM is many orders of magnitude smaller than current upper limits set by measurements
- Neutron EDM induced by strong CP violation scales as $d_n^{\overline{\theta}_{QCD}} \sim \overline{\theta}_{QCD} \times 10^{-16} e \cdot cm$. From neutron EDM upper limit, measured value of $\overline{\theta}_{QCD}$ is $\leq 10^{-10}$, much smaller than naturally expected value of order of unity:
 - This apparent anomaly where QCD does not seem to violate CP symmetry is known as the Strong CP Problem
 - Existence of nonzero hadronic EDM may thus provide first evidence of CP violation in QCD, or evidence of CP-violating physics beyond Standard Model
- New sources of CP violation (beyond that present in Standard Model) are needed to explain matter-antimatter asymmetry in universe more details in next slide

CP Violation and Matter-Antimatter Asymmetry

 Asymmetry parameter (relates overall number density difference between baryons and antibaryons and number density of cosmic background radiation photons):

$$\alpha = \frac{n_B - n_{\bar{B}}}{n_{\gamma}}$$

- Measured: $\alpha = 10^{-10}$, Standard Model: $\alpha = 10^{-18}$
- CP violation would allow matter and antimatter to decay at different rates leading to a
 possible matter-antimatter asymmetry as observed today
- New CP violation sources beyond Standard Model are needed to explain predominance of matter over antimatter
- Could show up in EDMs of elementary particles


EDM Searches in Storage Rings

EDM Measurements

- Electron and Proton EDMs are deduced from neutral atom/molecule measurements
- Direct measurements only for neutron and muon
- Muon EDM limit is from muon g 2 experiment
- No measurement of deuteron or any other nucleus

Particle/Atom/ Molecule	Measured Upper Limit (e · cm)	Standard Model (e ⋅ cm)
ThO		
\rightarrow Electron	< 1.1 × 10 ⁻²⁹	10 ⁻⁴⁰
¹⁹⁹ Hg → Proton	< 2 × 10 ⁻²⁵	10 ⁻³²
Neutron	< 3.6 × 10 ⁻²⁶	10 ⁻³²
Muon	< 1.8 × 10 ⁻¹⁹	10 ⁻³⁶

https://doi.org/10.1103/RevModPhys.91.015001

If neutron is size of Earth, this corresponds to charge separation of up and down quarks of size of an atom

Why Storage Rings?

- Any measurement of EDM relies on measuring spin precession rate in an electric field of a particle's rest frame, $\frac{d\vec{s}}{dt} = \vec{\mu} \times \vec{B}_{rest} + \vec{d} \times \vec{E}_{rest}$
- However, since an electric field leads to acceleration for charged particles, such measurement cannot be made while keeping particle at rest
- Therefore, to both apply an electric field and trap a charged particle, a storage ring must be used
- For a charged particle moving in electric and magnetic fields given in lab frame, generalized Thomas-BMT equation of spin precession is: $\frac{d\vec{S}}{dt} = (\vec{\omega}_{MDM} + \vec{\omega}_{EDM})\vec{S}, \text{ with:}$ $\vec{\omega}_{EDM} = -\frac{\eta}{2}\frac{q}{mc}\left(\frac{1}{\gamma}\vec{E}_{\parallel} + \vec{E}_{\perp} + \vec{\beta} \times \vec{B}\right)$

where $\vec{v} \equiv \vec{\beta} c$ and γ are the particle's velocity and Lorentz energy factor

EDM Searches in Storage Rings

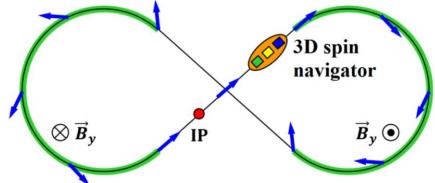
• Choices for storage rings:

$$\omega_{y,MDM} = -\frac{q}{mc} \left(GB_y - \frac{1 - \gamma^2 \beta^2 G}{\gamma^2 \beta} E_x \right)$$

- 1. All-electric ring (B_y=0) with $\gamma^2 = 1 + \frac{1}{G}$, described as Magic-Energy (ME) or Frozen-Spin approach, works only for G > 0 ($G_p = 1.79$, $G_e = 0.00116$):
 - Two experiments have been proposed to measure d_p with a sensitivity of 10⁻²⁹ e · cm at ME of 232.8 MeV: <u>http://collaborations.fz-juelich.de/ikp/jedi/</u>, <u>https://www.bnl.gov/edm/</u>

No electron EDM proposal at magic energy (14.5 MeV) because there is no viable polarimetry

- 2. Combined electric/magnetic ring with $GB_y = \frac{1-\gamma^2 \beta^2 G}{\gamma^2 \beta} E_x$. An experiment is planned to measure deuteron ($G_d = -0.143$) EDM at 1.0 GeV/c with such a ring
- 3. Spin-Transparent (ST) Storage Rings: Transverse and longitudinal electric fields and no magic energies this work

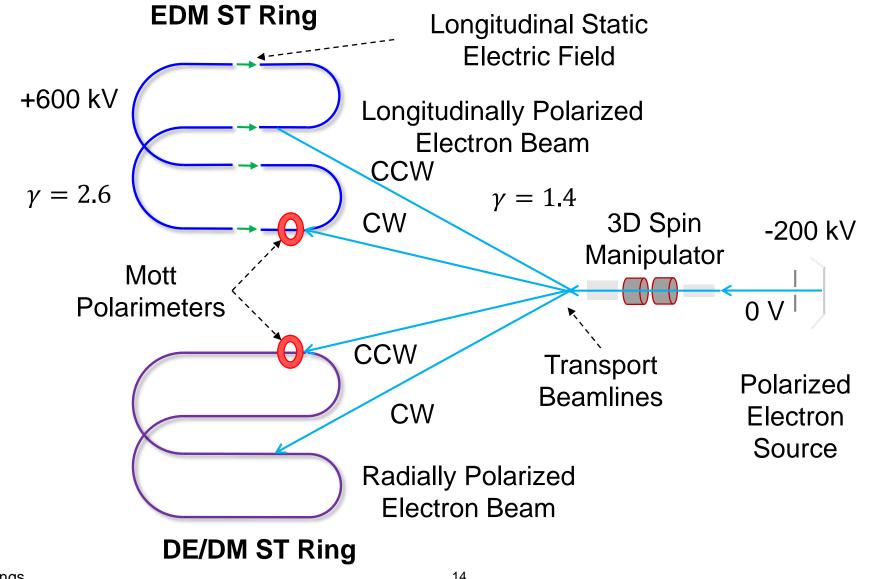


What is Spin Transparency (ST)

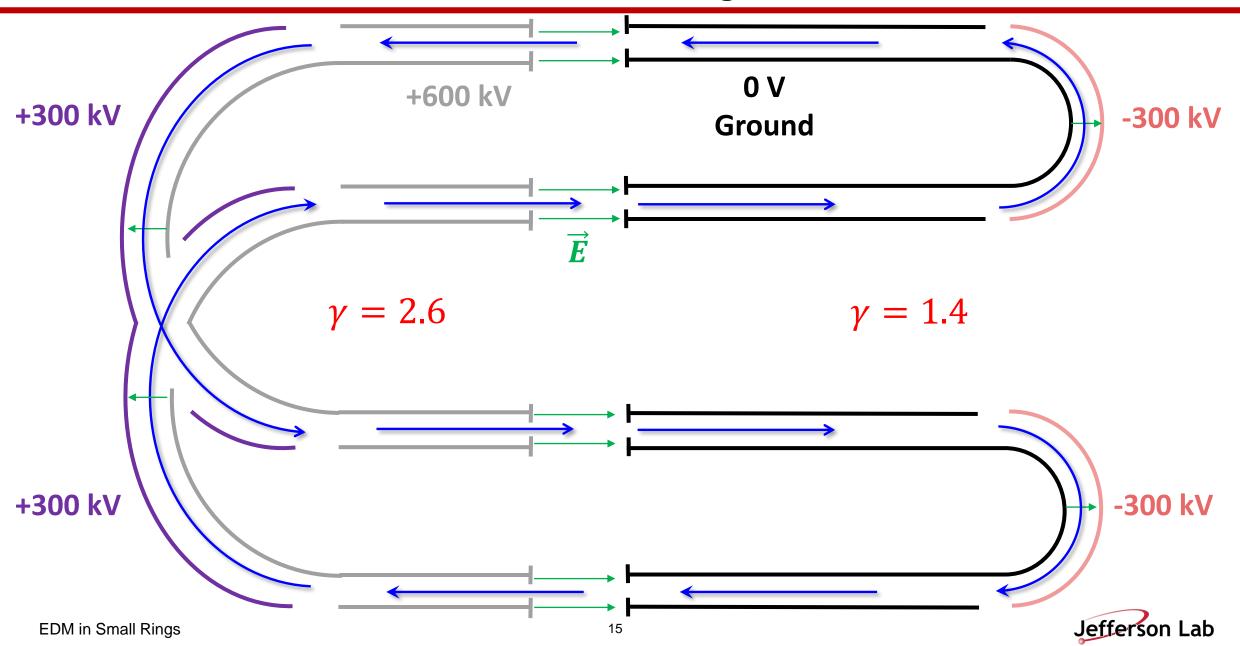
- In ST mode, any spin direction repeats after a particle turn along periodic orbit in storage ring
- It is an ideal definition; but it can be approached with a high precision
- Best example is a figure-8 magnetic or electric ring; here global spin tune is zero independent of particle energy

https://doi.org/10.1103/PhysRevLett.124.194801

https://doi.org/10.3390/sym13030398


 Remaining challenge is to compensate for misalignments and spin decoherency due to beam emittances

Electron Spin-Transparent Storage Ring and EDM Precession Rate



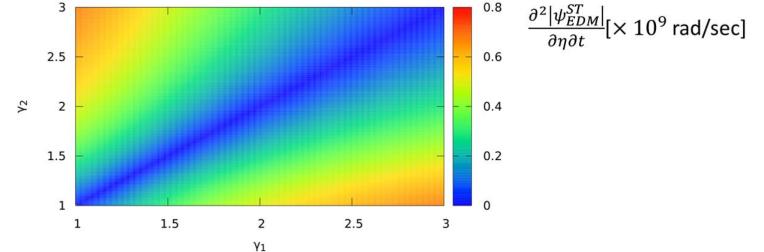
Electron Experimental Schematics

Static Electric Fields of Electron EDM ST Ring

Example of Electrostatic Storage Ring

- <u>https://www.desiree-</u> infrastructure.com/
- <u>https://doi.org/10.1063/1.3602928</u>
- Two 8.6 m circumference storage rings in a 13 K chamber

EDM Spin Field


- ST ring consists of two low-energy and two high-energy arcs connected by longitudinal field sections to provide acceleration/deceleration
- This preserves suppression of MDM effect but removes degeneracy of EDM spin precession
- Spin transparency condition satisfied when each arc bends by exactly π radians
- A straightforward way to obtain EDM spin rotation per turn, $\partial |\psi_{EDM}| / \partial N$, is to treat EDM signal as a perturbation of MDM spin motion on closed orbit:

$$\frac{\partial |\psi_{EDM}|}{\partial N} = \left| 2\eta \left[\frac{\gamma_2^2 \beta_2}{1 - \gamma_2^2 \beta_2^2 G} - \frac{\gamma_1^2 \beta_1}{1 - \gamma_1^2 \beta_1^2 G} - \ln \frac{\gamma_2 + \sqrt{\gamma_2^2 - 1}}{\gamma_1 + \sqrt{\gamma_1^2 - 1}} \right] \sin \left(\frac{\omega_M^1}{2} \pi \right) \sin \left(\frac{\omega_M^2}{2} \pi \right) \right|$$

EDM in ST Storage Ring

- $d_e = 10^{-29} e \cdot cm$, $\eta = 1.04 \cdot 10^{-18}$
- EDM spin rotation per unit η and unit time is $\partial^2 |\psi_{EDM}| / (\partial \eta \partial t) = f_c \partial^2 |\psi_{EDM}| / (\partial \eta \partial N)$ where f_c is beam circulation frequency
- Assume bending and accelerating/decelerating electric fields of |E| = 10 MV/m and a packing factor of 0.5

Scheme	γ	$\left \frac{\partial^2 \psi_{EDM} }{\partial \eta \partial N} \right $ [rad]	$\left \frac{\partial^2 \psi_{EDM} }{\partial \eta \partial t} \right $ [× 10 ⁹ rad/sec]	$\left \frac{\partial \psi_{EDM} }{\partial t} \right $ [nrad/sec]
ME ring	29.38	92.24	1.47	1.53
ST ring	(1.4,2.6)	4.24	0.46	0.48



Electron EDM Ring Details

EDM Optics Design and Ring Footprint

- Due to change of bending direction from arc to arc, each arc has to be achromatic
- Use weak-focusing achromatic arc design https://doi.org/10.1016/0168-9002(85)90585-6
- Assuming bending electric field of E = 5 MV/m and $\gamma = 2.6$, $\rho_{min} = \frac{m\gamma v^2}{|qE|} = \frac{mc^2(\gamma^2 1)}{|qE|\gamma} \simeq 22.6$ cm
- Optics and ring size scales with momentum
- Combined function electrostatic elements
- Optical match by scaling arc size

0.5

0

x (m)

Intra-Beam Scattering and Stochastic Cooling

- Use Conte-Martini in MAD-X to find a combination of transverse emittances and momentum spread resulting in adequate IBS times for cooled and uncooled cases
- Coasting beam
- Accounts for
 - coupling of IBS rates
 - damping/anti-damping
 - optics scaling
 - difference in geometric size of and in amount of charge stored in each energy section
- No stochastic cooling
 - Find ε_x , ε_y and σ_δ such that $\tau_x^{IBS} = \tau_y^{IBS} = \tau_z^{IBS} = 10^4$ s: $\varepsilon_x^N = 0.63$ mm, $\varepsilon_y^N = 0.61$ mm, $\sigma_\delta = 0.09$
 - Beam size: $\sigma_x = 12$ mm, $\sigma_y = 16$ mm
- With stochastic cooling
 - Find ε_x , ε_y and σ_δ such that $\tau_x^{IBS} = \tau_y^{IBS} = 10^2$ s and $\tau_z^{IBS} = 10$ s: $\varepsilon_x^N = 0.15$ mm, $\varepsilon_y^N = 0.08$ mm, $\sigma_\delta = 0.015$
 - Beam size: $\sigma_x = 4$ mm, $\sigma_y = 5.8$ mm

> Typical time of stochastic cooling with $N = 6.25 \cdot 10^9$ particles and bandwidth W = 0.5 GHz:

$$\tau \sim \frac{N}{2W} \sim 6 \sec \theta$$

Quantity	Value		
γ_1, γ_2	1.4, 2.6		
Bending radii: R ₁ , R ₂	9.2 cm, 22.6 cm		
Slip factor	-0.0586 at γ_1		
Straight section length	12.3 cm		
Total circumference	5.27 m		
Electrode spacing	6 cm		
Revolution time	20.9 ns		
Electrons per fill, N _e	1 nC CW and 1 nC CCW		
Normalized x/y emittance			
Without (with) cooling	628/610 μm (146/79 μm)		
Momentum spread, σ_{δ}			
Without (with) cooling	8.8% (1.5%) at γ_1		

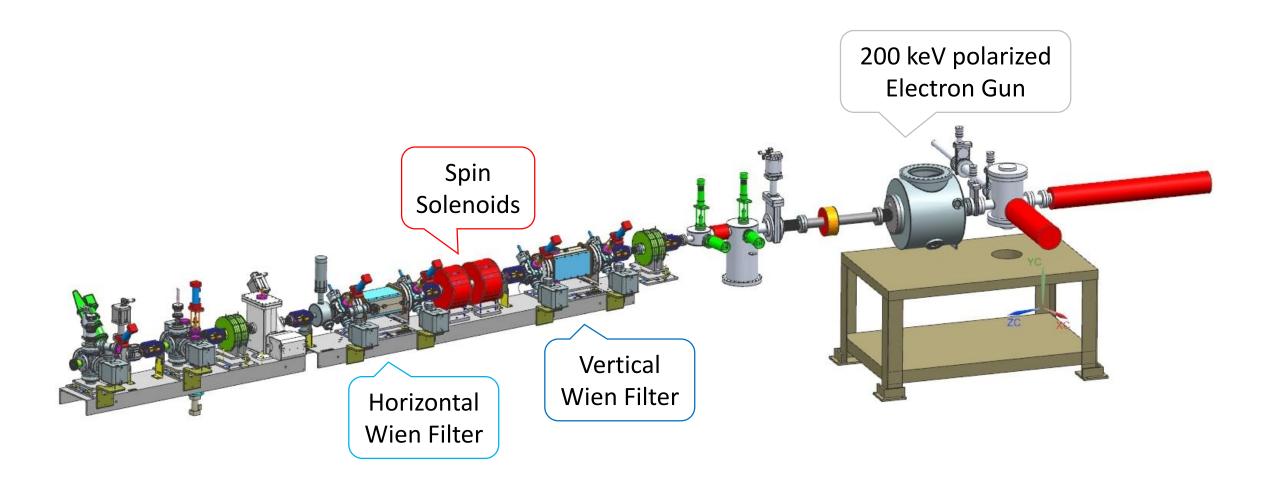
- Another potential limitation on amount of stored charge comes from betatron tune shifts $\Delta v_{x/y}^{sc}$ due to space charge fields
- Using cooled beam parameters, direct space-charge tune shift is $\Delta v_{\chi/\gamma}^{sc} = 0.84/2.7 \times 10^{-3}$
- More importantly, each stored beam experiences field of counter-rotating beam. Its local effect is a factor of γ²(1 + β²) stronger than self-field interaction. Resulting tune shift is a factor of about 6.5 greater than that of a single beam. Fortunately, it is still much less than typical threshold of 0.1.
- Strong Landau damping due to large energy spread at equilibrium prevents development of Coulomb intra-beam and counter-beams instabilities

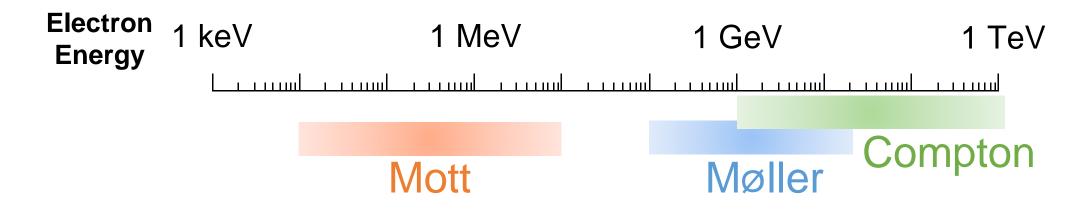
Incoherent (Single Electron) Synchrotron Radiation

• For electrons with $\gamma_2 = 2.6$, power radiated by a single electron in free space is estimated to be about 187 eV/s and for $\gamma = 29.38$ (ME case) synchrotron radiation is about 35 keV/s per single electron

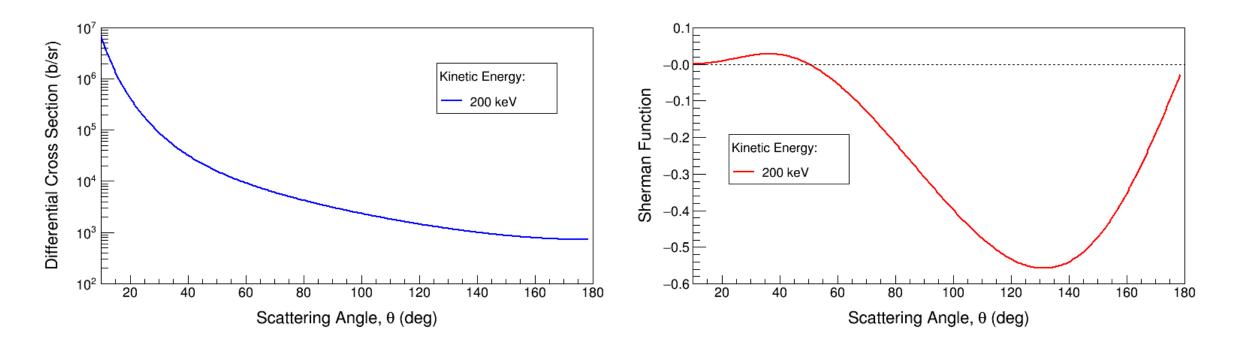
$$P_{FS} = \frac{e^2 c \beta^4 \gamma^4}{6\pi\epsilon_0 \rho^2}$$

- For ST ring, and since $\gamma_2 < \sqrt{R_2/a}$ where R_2 is ring bending radius and a is half electrode spacing, synchrotron radiation is drastically suppressed by shielding effect
- In contrast, there is no such shielding effect in ME ring and synchrotron radiation is another major drawback when compared to low energy ST ring


- Beam lifetime:
 - Stochastic Cooling will overcome IBS effect
 - Expected lifetime due to beam-beam interaction is estimated to be 15000 s
- SCT is time beam stays polarized in storage ring a long polarization lifetime is required since this is time available to accumulate and observe EDM signal
 - ST ring spin tune is energy independent, energy spread does not contribute to depolarization in first order
 - Main limitation comes from spin tune spread due to beam emittances
 - Limitation due to emittance of beam under stochastic cooling still needs to be analyzed
 - SCT was estimated to be around 10000 s, which is comparable to beam lifetime noted above

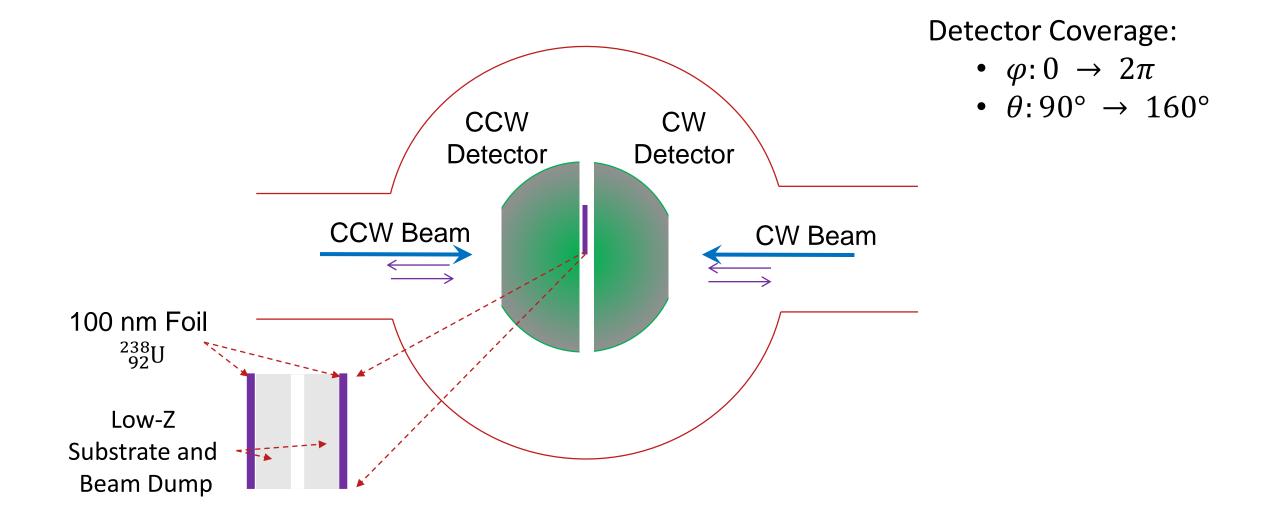

Polarized Electron Source and Electron Polarimetry

Polarized Source and 3D Spin Manipulator


- Mott Polarimeter: Measure transverse polarization. Above 10 MeV maximum analyzing power close to 180 degrees (cross section very small and approaches incident beam direction).
- Møller Polarimeter: Measure longitudinal polarization. Requires magnetized ferromagnetic materials as a source of polarized target electrons. Below 20 GeV to separate scattered electrons from incident beam.
- Laser Compton Polarimeter: Measure longitudinal polarization. Below 1 GeV asymmetry is too small.
- Compton Transmission Polarimeter: Measure longitudinal polarization. Associated with beam dumps. Detects secondary gammas after passing through magnetized iron. Works above few MeV. https://doi.org/10.1142/S0218301318300047

EDM in Small Rings

Mott Polarimetry


- Electron kinetic energy of 200 keV ($\gamma = 1.4$, $\beta = 0.70$) scattering from 100 nm uranium-238 foil (5×10^{17} atoms/cm²)
- Measure both vertical polarization and horizontal polarization at same time

An example of Mott polarimeter: https://doi.org/10.1103/PhysRevC.102.015501

Mott Polarimeter Design

Statistical and Systematic Uncertainties

EDM Statistical Uncertainty

• Statistical uncertainty per fill with continuous Mott measurements:

$$\sigma_{EDM} = \sqrt{24} \frac{d_e}{\sqrt{N_e \epsilon} Ay P \Omega_{EDM} SCT}$$
$$\sigma_{EDM} = 4.7 \cdot 10^{-27} e \cdot cm$$

• In one year:

$$\sigma_{EDM} = 8.4 \cdot 10^{-29} \, e \cdot cm$$

Electrons per Fill	N _e	$1.2 \cdot 10^{10}$ 6 $\cdot 10^{9}$ CW, 6 $\cdot 10^{9}$ CCW
Polarimeter Efficiency	E	0.0024
Analyzing Power	Ay	0.45
Beam Polarization	Р	0.9
Precession Frequency	Ω_{EDM}	0.48 nrad/s (calculated assuming $1 \cdot 10^{-29}$ e·cm)
Spin Coherence Time	SCT	10000 s

With expectation that further optimization and improvements will lower this limit

• Current limit from ThO molecule: $d_e < 1.1 \times 10^{-29} e \cdot cm$ (90% C.L.)

- Both proton EDM collaborations have done extensive studies:
 - Many sources have been identified: background magnetic fields, vertical velocity, errors in construction and alignment, vertical E-field, ...

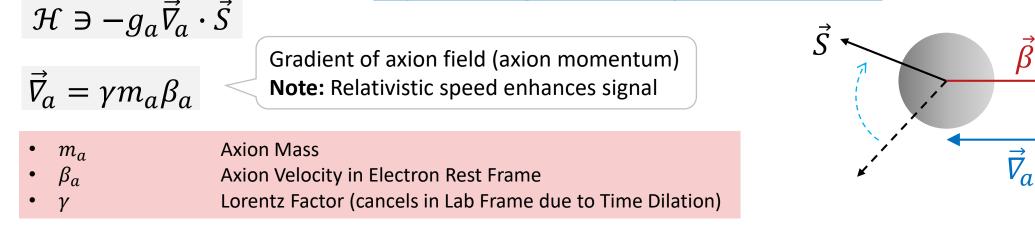
https://doi.org/10.23731/CYRM-2021-003

https://arxiv.org/abs/2007.10332

- Counter-rotating beams (and with both helicities) will suppress some uncertainties
- Elaborate state-of-art shielding of background magnetic fields is practical since ST ring is very small but electron lighter mass (relative to proton) increases sensitivity to these fields
- With coasting beam, ST ring cannot store all polarization states (longitudinal, vertical, and radial) and with both helicities (positive and negative) at same time – a major challenge to control systematic uncertainties
- Mott Polarimetry related systematic uncertainties

More work is needed to evaluate all sources of systematic uncertainties in ST ring

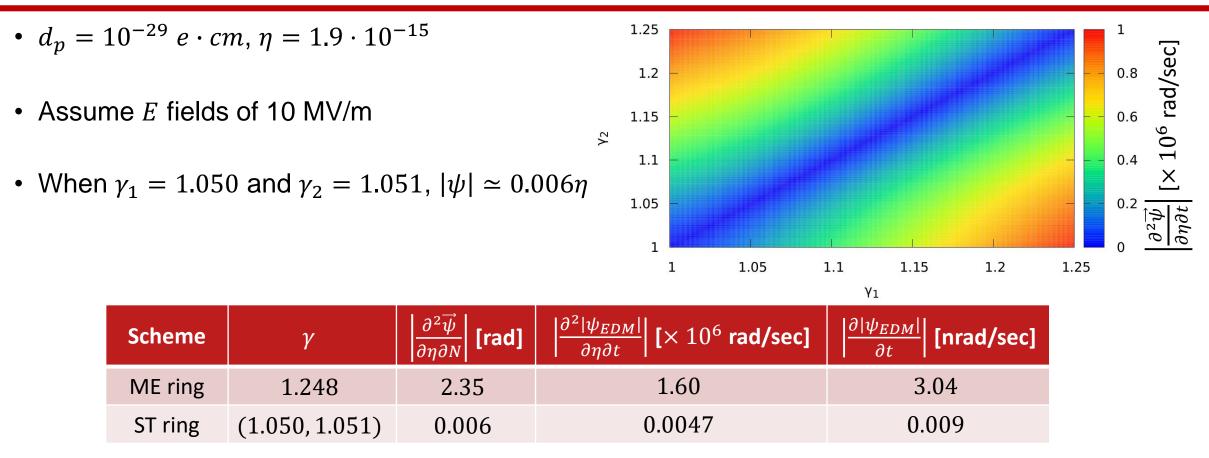
New Design: use RF accelerating/deaccelerating instead of static electric field, i.e., bunched instead of coasting beam


Dark Energy and Dark Matter

Dark Energy and Dark Matter (DE/DM)

 Interaction of axion (ultra-light dark matter and dark energy particle) with electrons contains this term:

https://doi.org/10.1103/PhysRevD.103.055010


- Spin of radially polarized electrons will precess around electron's velocity
- DE/DM ring is similar to EDM ring but without longitudinal electric field counter rotating electron beams stay at one energy level

Spin-Transparency and Proton EDM Search

Applying ST to Proton EDM Search (Similar to Electron)?

• Hard to generate a sufficiently large modulation of γ , especially with static fields, for protons to compete with ME However, applying ST as a new approach to proton and

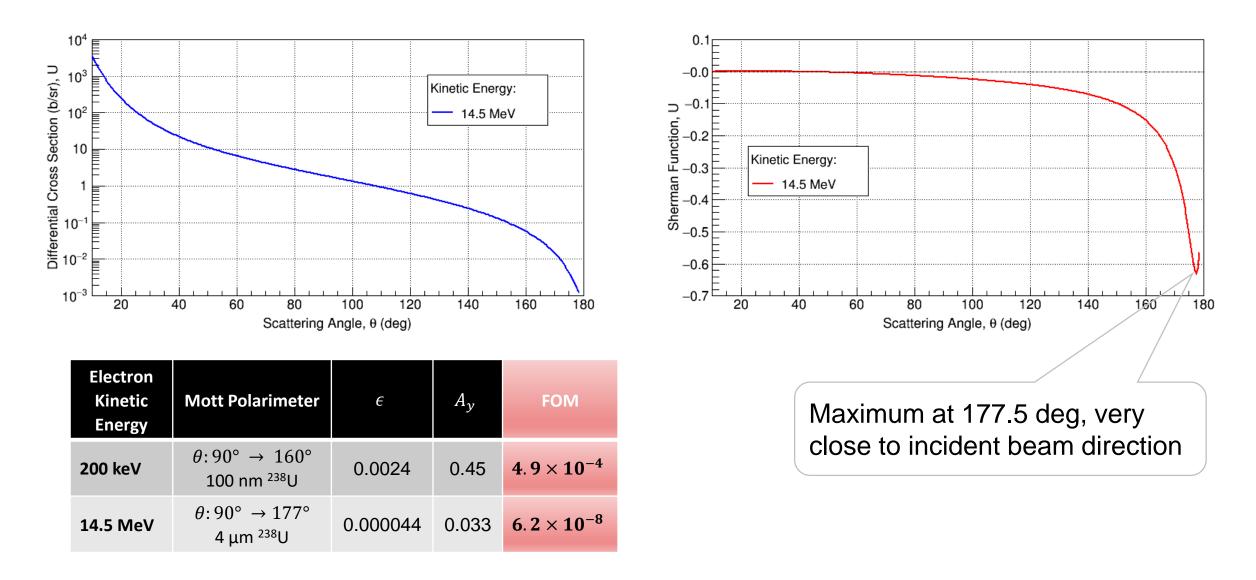
deuteron is under study by a German-Russian collaboration

Summary

- We presented new method for a <u>direct</u> measurement of $d_e = 10^{-29} e \cdot cm$ and to search for DE/DM using small ST rings in energy range below 1 MeV
- Presented approach has following advantages:

energy-independent spin tune, long SCT, bunched and un-bunched (coasting) beam, any energy, spin-achromatic beam transport, no synchrotron radiation, minimum safety issues, straightforward polarimetry, counter-rotating beams, room-sized facility, good control of systematic effects and imperfections including background magnetic fields, manageable, low cost, and finally, such rings can serve as testbed for larger-scale experiments

- Future Plans:
 - Study all sources of systematic uncertainties
 - Techniques of compensation and control for spin coherent and decoherent detunes due to background magnetic fields, imperfections, and beam emittances are under consideration by several collaborations
 - ST ring concept could potentially be extended to low-energy polarized proton, deuteron, and muon beams using electric/magnetic or all-electric rings of comparable dimensions to those described here for electrons, although for this all-electric design, it is harder to create a substantial modulation of γ for heavy particles


Thank you

Mott Polarimetry at Electron Magic Energy

Jefferson Lab

Particle/ Nucleus	Anomalous Magnetic Moment $G_M = \frac{g-2}{2}$	Spin - Parity
е	0.00116	$\frac{1}{2}$ +
μ	0.00117	$\frac{1}{2}$ +
n	-2.91	$\frac{1}{2}$ +
р	1.79	$\frac{1}{2}$ +
d	-0.143	1+

