Mott DAQ Speed

February 16, 2015

VME CRATE (VME8200 9U 21Slot - VME64x backplane with no P0 connector)

Opsmdaq0

Name	Readout	Trigger
Scalers	Scaler S1 (helicity gated), S2 (un-gated)	Delayed nT_Settle
Mott_Sample	Mott FADC (Mode=1), S1, S2, TDC	Mott Detector
Mott_SemiInt	Mott FADC (Mode=7), S1, S2, TDC	Mott Detector
PEPPo_Int	INT FADC, S1, S2	nT_Settle
SemiIntFast	Mott FADC (Mode=7), BlockLevel=1	Mott Detector
SemiIntBlock	Mott FADC (Mode=7), BlockLevel=50	Mott Detector

Use Faster DAQ Mode

- For DAQ to be faster:
 - No Readout of CAEN V775 TDC or SIS3801 Scalers; only FADC readout
 - Use block readout
- FADC has a mode with smaller data size and time readout: Pulse Integral and High Resolution Time Mode
- What about scalers?
- We took data with this mode ... results are shown next ...

4

Comparison of:

Raw ADC Data Samples Mode

VS.

Pulse Integral and High Resolution Time Mode

RAW ADC DATA SAMPLES – RUN

Raw ADC Data Samples

Mott Settings:

Mott Readout:

Ι.

50 samples

- I. Programmable Latency (PL) = 60 samples
- II. Programmable Trigger Window (PTW) = 50 samples
- III. Threshold = 0
- IV. Each Sample = 4 ns (250 MHz), 0 4096 (2¹²)

Samples

Analysis: Pedestals

Analysis: Energy

PULSE INTEGRAL AND HIGH RESOLUTION TIME – RUNS 8224, 8235

Pulse Integral & High Resolution Time

Mott Settings:

- I. PL = 60 samples, PTW = 50 samples, NW = NSB + NSA
- II. Programmable Trigger Energy Threshold (TET)
- III. Number of pulses (NP) in PTW = 1 (up to 3 pulses)
- IV. Number of Samples Before threshold crossing (NSB) = 5
- V. Number of Samples After threshold crossing (NSA) = 28

TET

fadc threshold[0] = 600; fadc threshold[1] = 600; fadc threshold[2] = 600; fadc threshold[3] = 600; fadc threshold[4] = 600; fadc threshold[5] = 600; fadc threshold[6] = 600; fadc threshold[7] = 600; fadc threshold[8] = 1750; fadc threshold[9] = 1750; fadc threshold[10] = 1000; fadc threshold[11] = 1750; fadc threshold[12] = 10; fadc threshold[13] = 10; fadc threshold[14] = 10; fadc threshold[15] = 10;

Pulse Integral & High Resolution Time

Pulse Pedestal

Pulse Peak Value (VP)

Pulse Integral

Pulse Coarse Time

Pulse Fine Time

Analysis: Pedestals

Analysis: Energy

Analysis: Self Timing Peak

T->Draw("(TimeCoarse11*4.0 + TimeFine11*0.0625) - (TimeCoarse1*4.0 + TimeFine1*0.0625) >> h1", "TimeCoarse1>1.0 &&TimeCoarse11>1.0")

Analysis: E-dE Timing Peak

T->Draw("(TimeCoarse5*4.0 + TimeFine5*0.0625) - (TimeCoarse1*4.0 + TimeFine1*0.0625) >> h1", "TimeCoarse1>1.0 &&TimeCoarse5>1.0")

T->Draw("(TimeCoarse1*4.0 + TimeFine1*0.0625) - (TimeCoarse9*4.0 + TimeFine9*0.0625) >> h1", "TimeCoarse1>1.0 &&TimeCoarse9>1.0")

T->Draw("(TimeCoarse11*4.0 + TimeFine11*0.0625) - (TimeCoarse9*4.0 + TimeFine9*0.0625) >> h1", "TimeCoarse1>1.0 &&TimeCoarse9>1.0")

T->Draw("(TimeCoarse11*4.0 + TimeFine11*0.0625) - (TimeCoarse9*4.0 + TimeFine9*0.0625) >> h1", "TimeCoarse1>1.0 &&TimeCoarse9 >1.0 &&VPeak9>0.0")

Three Timing Signals

- Added two more laser timing signals to FADC.
- From Disc 708, OUT signal was connected to FADC Ch10 and OUT_bar was connected to Ch12.
- Original laser timing signal is still connected to Ch9.

T->Draw("(TDC17-TDC18)>>h1","VPeak1>600")

T->Draw("(TimeCoarse11*4.0 + TimeFine11*0.0625) - (TimeCoarse9*4.0 + TimeFine9*0.0625) >> h1", "TimeCoarse1>1.0 &&TimeCoarse9 >1.0 &&VPeak9>0.0")

Notes

00

0 °

0 °

Note 1

Note 2

Note 3

MIN(NSB+NSA, PTW): Make sure NSB+NSA is less than PTW. Otherwise from CODA readout, cannot tell how many samples were summed; this is needed for pedestal subtraction.

How FADC deal with a periodic square wave. Possible Solutions:
I. Use signal and signal_bar – Run 8235 (do not know if it works; still analyzing)

I. Add same signal to another channel delayed by ½ period

Conclusions – so far ...

- Pulse Integral and High Resolution Time Mode has good energy and time resolutions. Must have:
 - Correct FADC parameters: Threshold, NSB, NSA
 - How to deal with a periodic signal?

• Again, what about scalers?

 A new CODA Configuration was created with this mode (no CAEN v775 TDC and no SIS3801 Scalers) with block readout. Next ...

Conclusions – so far ...

- Measure deadtime with 2.2 uA on 1 um gold foil:
 - I. Run 8225: Mott_SemiInt configuration (FADC+TDC+Scalers), Deadtime = 28% at 5.1 kHz.
 - II. Run 8227: SemiIntFast configuration (only readout of FADC, Blocklevel = 1), Deadtime = 17% at 5.1 kHz.
 - III. Run 8228: SemiIntBlock configuration (only readout of FADC, Blocklevel = 50), Deadtime = 1% at 5.1 kHz.

Learn how to unblock and analyze