Update: Puck and Gun Magnet

March 1, 2016

Magnetized Gun

$\mathrm{K}_{2} \mathrm{CsSb}$
Preparation Chamber

HV Chamber

Coil + Steel Puck

Cathode-Anode Gap

Steel Puck

- Molybdenum and Steel hybrid puck

Designed to enhance field to 2.0 kG at cathode
Use 1010 carbon steel

- Re-design new Puck Manipulator End Adapter

Order 4 pucks - map with Coil (August 2016)

- Heat Treatment:

1. Un-heated
2. $200^{\circ} \mathrm{C}(\mathrm{Sb})$ and $120^{\circ} \mathrm{C}(\mathrm{K}-\mathrm{Cs})$ growth
3. $550^{\circ} \mathrm{C}$ Heat Cleaning then $200^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$
4. Multiple

Design I

Design II

Steel

Power Supply

- Use new spare Dogleg power supply (500A, 80V)
- If needed at CEBAF, we can use an old Dogleg supply (250A, 50V) to keep going
- Need to add polarity switch to be able to degauss steel

Coil

- Not bakable - will be mounted on rails. Push downstream out of oven and run LCW through. Move gate valve after beamline solenoid (in place of BPM). Move HV Chamber front foot upstream.
- Designed to give 1.4 kG at cathode without steel puck Bare coil - no cylindrical steel shield/return
- Procurement:

1. Everson Tesla
2. Buckley Systems
3. Alpha Magnetics ($\$ 20.5 \mathrm{k}, 12$ weeks)
4. JLab Machine shop

- Designer: Gary Hays

Coil Specs (Jay Benesch)

- One water cooled magnet coil
- Inside diameter 30 cm , round to 0.2 cm
- Outside diameter roundness: 0.5 cm
- Flatness, each side, 0.3 cm
- 8 double pancakes (DP). Each DP has 40 turns. Coil is 16 turns wide by 20 turns radial, 320 turns total. Conductor is Luvata 6092 or equivalent copper conductor, 9 mm square with 6 mm round hole for water cooling. These may be soldered or bolted together as vendor prefers, see also potting options below. Vendor should propose input/output flags suitable for 450A.
- Eight parallel water cooling circuits, one per double pancake, with 37° flare JIC tube fittings. All eight water connections shall be located on the coil outer diameter within a 15 degree region of the assembly. Vendor shall provide a cooling water specification (flow rate and pressure) for each water circuit assuming 450 A current and water inlet temperature of $35^{\circ} \mathrm{C}$.
- Coil cross-section shall be less than $16 \mathrm{~cm} Z$ by 20 cm R.
- Vendor shall propose insulation system. Glass-epoxy with at least $110^{\circ} \mathrm{C}$ capability preferred. Potting may be done as a "bag job". Tooling could also be built to pot four double pancakes as a coil half with four water circuits and two leads. Bolted jumper plate to electrically join the two halves shall be provided in this case. Or full depth tooling can be built.
- Power supply is $500 \mathrm{~A}, 80 \mathrm{~V}$ and we plan to operate at 450 A and 72 V .
Size 11.811" ID, 27.559" OD, 6.242" ZConductorCoil WeightResistance

Voltage
Current
1.4 kG

72 V
Resistivity Coefficient: $\rho\left(20^{\circ} \mathrm{C}\right)=(1.72+0.00393 \Delta \mathrm{~T}) 10^{-6} \Omega \mathrm{~cm}$
$R=\rho L / A, \rho=1.9010^{-6} \Omega \mathrm{~cm}$

GTS inlet LCW temperature: $35^{\circ} \mathrm{C}$ and pressure: 5 bar Need a booster pump to raise pressure What is required flow rate?
Measure 5 G magnetic field line and mark with sings

Coil Mount

How much different geometric center from magnetic center? How uniform field at coil center? any beam steering?

Timeline

Power Supply (new spare Dogleg):

1. Build at Magnet Lab: March
2. Test and add polarity switch: April
3. Move to GTS: May
4. Ready: July 1,2016

Coil:

1. Design: February and March
2. Procure: April
3. On-site by end of July
4. Map (with and w/o puck), check hysteresis and forces: August
5. Install: August, 2016
