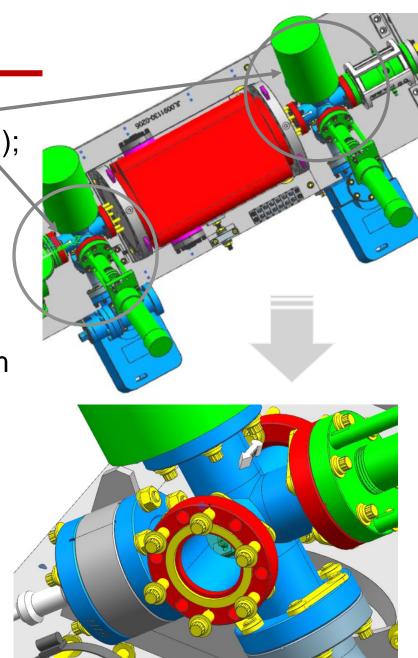
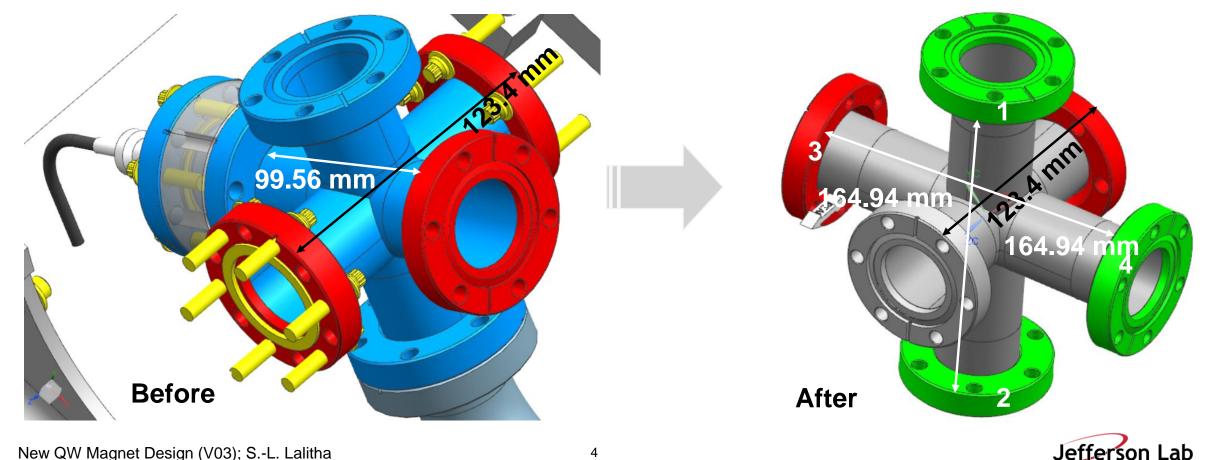
QW Magnet Design and Analysis Results (V03)

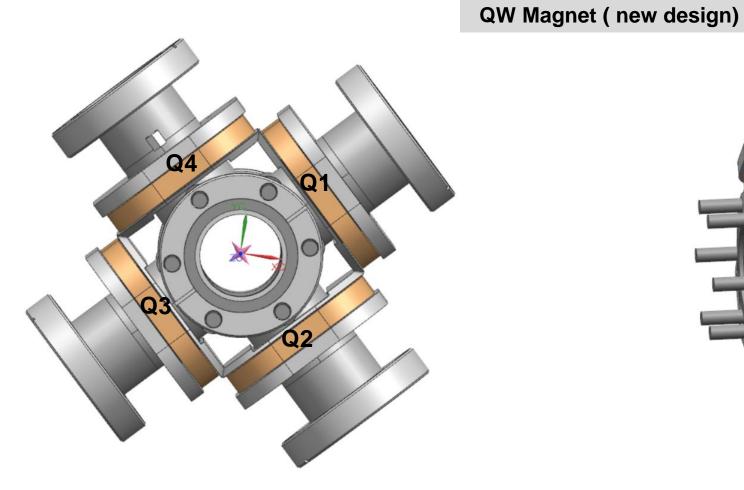
S-L. Lalitha September 12, 2020


Contents

- Design and Performance Requirements
- Design Considerations
 - -Coil
 - -Coil support structure
 - -Conductor selection
 - -Conductor layout in the coils
 - -Support clamps for the magnet assembly into the vacuum cross fitting
- Magnetic Results
 - -Field distribution
 - -Multipole field components
 - -Integrated quadrupole field gradient, quadrupole field homogeneity in good field region
 - -Inductance, Stored energy
 - -Coil resistance at RT
- Power supply requirement
- Summary and Recommendations

Design and Performance Requirements


- The QW quadrupole coils should be able to fit over a six way vacuum cross CF flange fitting (pipe OD- 38.1 mm (1.5 inch); flange OD 69.85 mm (2.75 inch)).
 - —The assembly is rotated 45° from horizontal axis (X-axis) .
- The components used in the coil winding and magnet assembly should be able to withstand heat treatment at a max. of 200 °C for 72 h.
- The quadrupole magnet should be able to deliver a maximum integrated field gradient of 0.01 T (100 Gauss)
- Radius of the GFR (R_{ref}): 7.5 mm
- Field homogeneity requirements-None for the design
 - -Estimate from the EM design analysis.
- Fringe field requirements: none


Space Available for QW Magnet Assembly

- Design changes (since QW design (V02) meeting Aug 31, 2020)
- Extended the pipe length radially (from 99.56 mm to164.94 mm)+ added tapped-bored flanges (1-4).
- No change made to (A) the cross length length-wise and (B) upstream and downstream CF flange configuration or hardware (bolts and spring washers).

Design Considerations: QW Coil Layout on the Vacuum Cross Fitting

- Racetrack coils (Q1, Q2, Q3, Q4) arranged in quadrupole geometry.
 —76 mm gap between the opposite coils.
- The coil bobbin is made out of stainless steel.

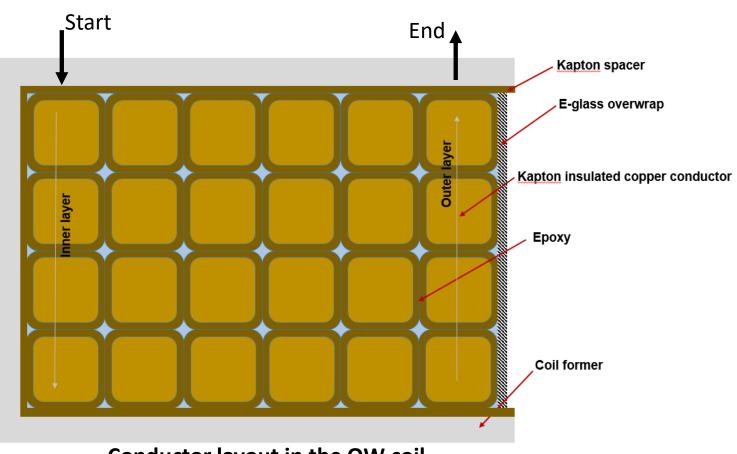
22 m

Design Considerations: Conductor Selection

• Kapton insulated 12 AWG square conductor with round corner. (potential supplier- MWS Wire Industries, CA)

Magnet wire parameters (Max. dimensions)	Unit	Value
Shape		Square with round corner
Copper grade		C101 or C102
Bare conductor size (equivalent AWG)		12
Bare conductor dimensions: width = thickness	mm	2.0777
Corner radius	mm	0.508
Radial thickness of the Kapton insulation	mm	0.0635
Insulated conductor dimensions: width = thickness	mm	2.2047

Design Considerations: Coils


- Flat coils ("easy to wind" geometry. Simplifies the tooling for the coil winding and the requirements for the support structure for magnet assembly)
- Wet wound with AREMCO 526 N epoxy.

QW coil parameters (Assumption: Coil wound on a PTFE bobbin) (estimated using the max. dimensions of the conductor)		Unit	Value
Distance between the opposite coils in the qua	adrupole assembly	mm	76
Radial thickness of the epoxy between the turn	ns (assumed)	mm	0.01
Inner gap- radial (X direction), longitudinal (Z direction)	R10 mm	mm	44.5, 91.4434
Radial thickness of the winding (X direction)	118 mm	mm	8.8489
Height of the winding (Y direction)	91.4434 mm 44.5 mm 8.8489 mm 13.2783 mm	mm	13.2783
Straight length, Overall length of the coil		mm	71.4434, 118
Inner corner radius	zc	mm	10
Total turn count (Number of layers, Number of turns per layer)			24 (6,4)
Estimated length of conductor per coil (5% extra for unknowns) (+1m for each lead wire)		m	~ 8.9
Req. length of conductor per magnet (four coils+ lead wires)		m	~35.6
New QW Magnet Design (V03); SL. Lalitha	7		Jefferson Lab

85,4434 mm **Design Considerations: Coil Former** Top surface • Made out of single piece of material; Material: SS(304 grade) -Bottom plate is shaped to fit the coil pack in the quadrupole 122 mm geometry with 76 mm gap between the opposite coils. -The lead wires route through the top plate of the coil former. Lead wire out Lead wire in -Kapton insulation between the coil and bobbin. Value **Coil Former dimensions** Unit 6.35 mm 38.5, Inner gapmm ↔ 2.5 mm radial (X direction), longitudinal (Z direction) 85.4434 9.8499 mm Corner radius of the inside surface of the core 7 mm 3 175 mm 15.0783 mm Thickness of the core 2.5 mm Thickness of the bottom plate, top plate 3.175, 6.35 mm bottom plate **Overall length** 122 mm Overall height 19.3749 mm chamfer (3.5 mm; sym.) Corner R 25.2783 mm Radial thickness of Kapton around the core 0.50 mm (two layers of 0.25 mm thick film) Thickness of pre-cut Kapton spacer between Top plate 0.50 mm coil and top and bottom plates of the bobbin R25.2783 mm New QW Magnet Design (V03); S.-L. Lalitha 8

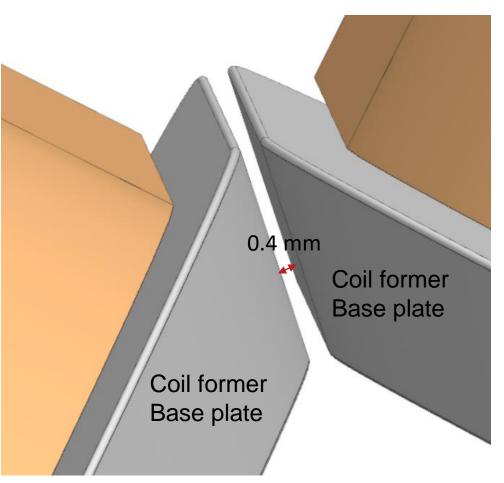
Conductor Layout in the Coil

- The coil wound directly on the SS former.
- Uses single piece length of the copper conductor.
- Wet wound with AREMCO 526 N Epoxy. (assumption: 0.01 mm thick epoxy filling between the coil turns)
- The coil winding tight against the bottom plate of the former.
- Filler could be used, as needed, in the gap between the top surface of the coil and former plate.
- Additionally 2 layers of 0.1 mm thick E-glass wrapped under tension on the outer surface of the finished coil and painted with the same epoxy.

Conductor layout in the QW coil

Note: flat coils, "easy to wind" geometry and tooling requirements; Considering the overall space constraints, the coil manufacturing process should strictly adhere to the suggested layout of the conductor and overall dimensional specification of the coils

Design Considerations: Coil Assembly on the Vacuum Cross Fitting

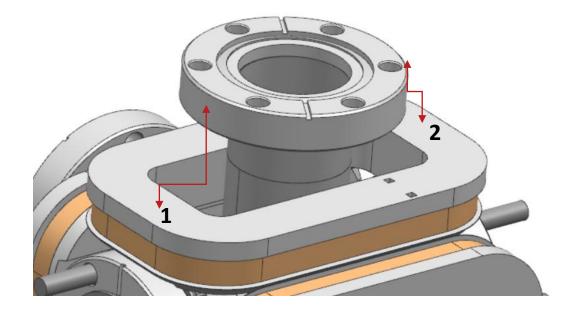

pack during the assembly stage.

Coil pack 0.39 mm Spring washer CF flange Sufficient clearance between the CF

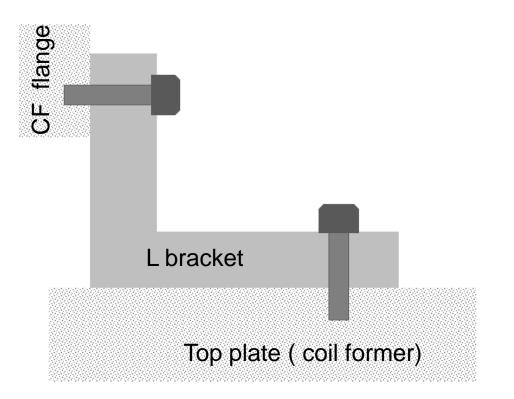
flange hardware and the coil pack

21.5 mm

~21.5 mm clearance between the CF flange and coil (in radial direction)

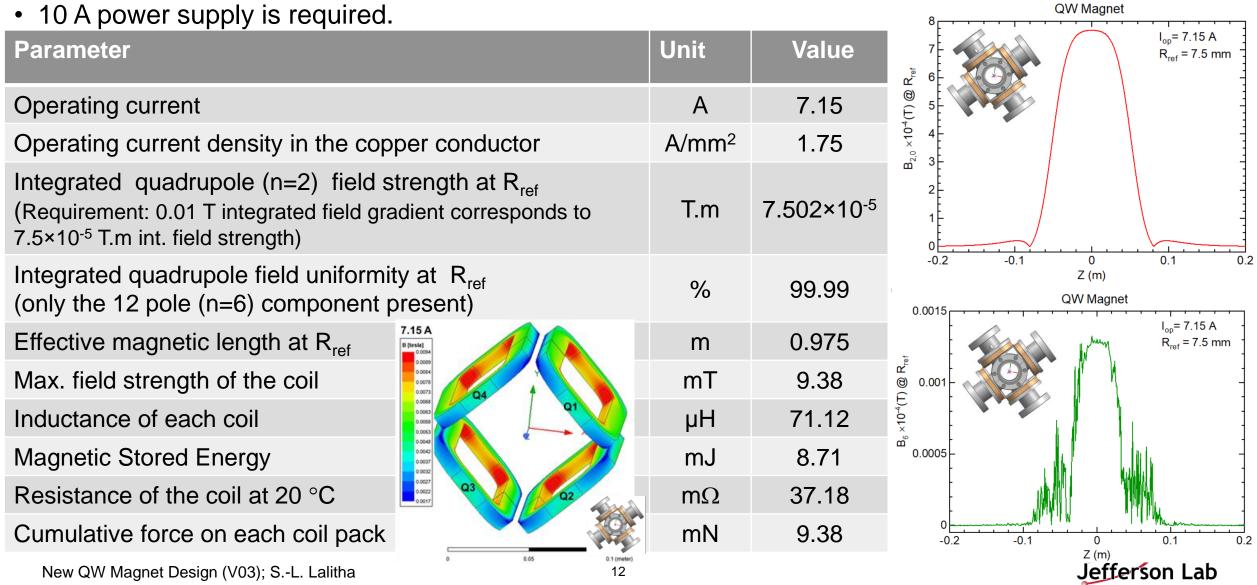


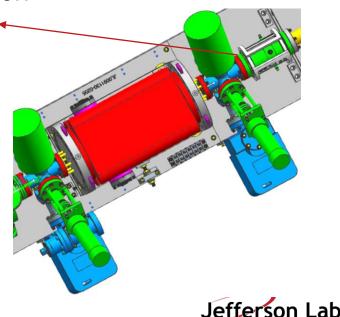
~0.4 mm clearance radially between the base structures of the coil former



New QW Magnet Design (V03); S.-L. Lalitha

Design Considerations: Magnet Support Structure


 L bracket or angled pipe bracket (SS) From top plate of the coil former at locations 1 and 2 as shown



Magnetic Performance Parameters (@ Max. Operating Conditions)

- EM design fulfills the performance requirements and provides sufficient operating margin (~12.5 %).
- 10 A power supply is required. •

- The new QW magnet design fulfills the performance requirements.
 - -Need to energize the coils at 7.15 A to achieve a maximum of 0.01T integrated quadrupole field gradient.
 - -10 A power supply is required.
 - -Provides additional 12.5% performance margin.
 - -Integrated quadrupole field homogeneity better than 99.99%.
 - -Structural evaluation- in progress
 - No room to include field clamp to minimize the fringe field interaction between the QW magnet and the neighboring (Haimson) steering magnet
 - The magnet to magnet interaction will be quantified.
 - We can add a stand-alone shield between these magnets if needed.
 - -Limit the max. operating current to 8.3 A (recommendation).
 - -Keep the bake temp to 180° C (recommendation)
 - To prevent the local hotspot exceeding 200 $^\circ$ C .

