PQB Meeting

5/5/2016

PC History effect

2

- Pairsynch Pickup problem wasn't all pairsynch pickup
- ~300ppm level decays in beam current during 30ms helicity window
- ~500ppm level shifts in beam current depending on flip sequence history
- ~1000ppm combined variation in charge asymmetry due to natural PC behavior when flipping at 30Hz
- PC History effect likely reduced by flipping more frequently
- PC History effect Aq variation can be harnessed as a PITA-scan like monitor check

Lisa's Thesis

Lisa's Thesis

Figure 4.5. The multipeak structure of A_Q is shown for the quad-random (red), pairrandom (blue), and pair-toggle (black) helicity patterns. The asymmetry is plotted in units of ppm.

Run2349 AqVSblocks[ms] Green=SAM3,Black=ubcm,Red=dbcm for 110,010,001,101

Run2349 AqVSblocks[ms] Green=SAM4,Black=ubcm,Red=dbcm for 110,010,001,101

PITA scan

- Ciprian got a PITA scan
- 30Hz, IHWP in, +- 2000 counts (65535counts/4000V conversion factor)
- 1MHz dbcm indicates PITA slope of -38ppm/V (+-2000ppm measurement)
- LH2 target in, SAMs on, ~40-45uA
- Position Differences go through 0 for some Voltages

PITA scan

dff_bpm4bp.ext_scandata1 {m_ev_num>10&&areg_bcm4>18000&4/[evt_scandata1>44200&&m_ev_num>78000&&8/[evt_scandata1-=43445&&m_ev_num>4445&&m_ev_num>10&0000]

PITA Scan

m_ev_num>10&&avg_bcm4>18000&&!(evt_scandat a1>44200&&m_ev_num>76000)&&!(evt_scandata1 ==43445&&m_ev_num>44000)

-2.34ppm/count

PITA Scan

m_ev_num>10&&avg_bcm4>18000&&!(evt_scandat a1>44200&&m_ev_num>76000)&&!(evt_scandata1 ==43445&&m_ev_num>44000)

-2.34ppm/count

PITA Scan

m_ev_num>10&&avg_bcm4>18000&&!(evt_scandat a1>44200&&m_ev_num>76000)&&!(evt_scandata1 ==43445&&m_ev_num>44000)

-2.34ppm/count

BPM and BCM noise

12

- Examine at 30Hz, 30Hz PS[0]=0, and 120Hz (ps=0)with subblocks
- Examine injector at 30Hz, 1kHz with samples per block set low and examining subblocks ps=0

8.8GeV, 45uA, 30Hz flip rate – Aq 40ppm

Run2498 1MHz down bcm: 30Hz: Aq=42.7ppm (RMS 314ppm) 30Hz(PS=0): Aq (RMS 116.4ppm) 120Hz(blocks PS=0): Aq (RMS 483.2ppm) b1-b2/sum sensitive to 60Hz 120Hz: Aq (RMS 96.99ppm)- 1/2(b1-b2/sum+b4-b3/sum) 120Hz(PS=0): Aq (RMS 95.28ppm) - 1/2(b1-b2/sum+b4-b3/sum)

blocks(ms)

30Hz,60Hz,120Hz? Run2333 4.4GeV, 12uA The 1MHz system

				1/2((b1-b2)/sum+(b4-	
			b1+b2-b4-b3/sum	b3)/sum)	b1-b2/sum
	30Hz RMS	30Hz *sqrt(2)	60Hz combo	120Hz combo	120Hzcombo
(<sampair15>-<sampair37>) RMS</sampair37></sampair15>	160.9	227.5	211.4	206.5	298.0
(<sampair15>-dbcmnew) RMS</sampair15>	306.5	433.5	629.3	636.5	4318.0
(<sampair15>-dbcm1MHz) RMS</sampair15>	188.4	266.4	244.9	220.9	340.8
dbcm1MHz RMS	576.4	815.1	774.3	548.9	3013.0
(<sampair15>-<sampair37>) Mean and RMS</sampair37></sampair15>					
PS[0]=0	145.0	205.1	211.1	205.6	297.4
ubcm1MHz -dbcm1MHz Mean and RMS	75.0	106.0	93.5	85.6	206.8
sqrt((<sampair15>-dbcmnew)^2-(<sampair15>-</sampair15></sampair15>					
dbcm1MHz) ^2)	241.8	341.9	579.7	596.9	4304.5

- As we up the frequency... things improve
- DD in 1MHz system beats sqrt(2) statistics from 1/2data-> as we increase rep rate, we are 'winning' in that the level of noise at 30Hz is more than at 60Hz, 120Hz
- SAM normalized widths (after factoring in sqrt(2) from ½ data), decrease with frequency – we are 'winning' at higher frequencies in terms of noise

10GeV, 15uA, 30Hz flip rate – position differences RMS 10um

30Hz flip rate

Run2434

diff_bpm4ax : RMS width 10.39um diff_bpm4ay : RMS width 10.39um diff_bpm4bx : RMS width 12.91um diff_bpm4by: RMS width 10.03um diff_bpm8x: RMS width 21.27um diff_bpm8y : RMS width 21.27um diff_bpm12x: RMS width 9.76um diff_bpm12y: RMS width 13.39um diff_bpm12y: RMS width 21.99um diff_bpm14x: RMS width 6.55um diff_bpm14y : RMS width 6.97um

30Hz PS=0

Run2434

diff_bpm4ax : RMS width 10.30um diff_bpm4ay : RMS width 10.31um diff_bpm4bx : RMS width 12.8um diff_bpm4by: RMS width 10.01um diff_bpm8x: RMS width 21.56um diff_bpm8y : RMS width 21.56um diff_bpm12x: RMS width 9.76um diff_bpm12y: RMS width 13.58um diff_bpm12y: RMS width 21.91um diff_bpm14x: RMS width 6.54um diff_bpm14y : RMS width 6.97um

b1-b2/sum Sensitive to 60Hz noise

120Hz PS=0

Run2434

diff_bpm4ax : RMS width 12.78um diff_bpm4ay : RMS width 12.79um diff_bpm4bx : RMS width 18.66um diff_bpm4by: RMS width 16.34um diff_bpm8x: RMS width 34.27um diff_bpm8y : RMS width 36.33um diff_bpm12x: RMS width 19.40um diff_bpm12y: RMS width 19.40um diff_bpm14x: RMS width 10.34um diff_bpm14y : RMS width 15.07um

1/2(b1-b2/sum+b4-b3/sum)

Statistically ->2x larger RMS beat statistical expectation

120Hz

Run2434

diff_bpm4ax : RMS width 6.16um diff_bpm4ay : RMS width 17.38um diff_bpm4bx : RMS width 10.45um diff_bpm4by: RMS width 23.85um diff_bpm8x: RMS width 22.87um diff_bpm8y : RMS width 22.87um diff_bpm12x: RMS width 47.04um diff_bpm12y: RMS width 13.80um diff_bpm14x: RMS width 27.82um diff_bpm14y : RMS width 13.77um

Injector Run1905 8.8GeV, 60uA

- 30Hz: Aq=41.48ppm (RMS 220ppm)
- (samples 4*4041=16164)
- 30Hz: bpm1l06x : RMS 3.826um
- 30Hz: bpm1I06y RMS 2.407um
- 30Hz: bpm0L10x RMS 11.34um
- 30Hz: bpm0L10y RMS 1.678um

1/2(b1-b2/sum+b4-b3/sum)

- 120HzAq (RMS 212.7ppm) insensitive to 60Hz
- 120Hz(ps0=0): Aq (RMS 261.5ppm)
- 120Hz: bpm1l06x: RMS 3.13um
- 120Hz: bpm1l06y RMS 8.91um
- 120Hz: bpm0L10x RMS 18.90um
- 120Hz: bpm0L10y RMS 23.36um

Injector Run1902 8.8GeV, 60uA

- Samplesperblock 441 b1-b2: 1.13kHz: Aq= (RMS 531.3ppm)
- 1.13kHz: bpm1l06x b1-b2: RMS 6.06um
- 1.13kHz: bpm1l06y b1-b2: RMS 12.43um
- 1.13kHz: bpm0L10x b1-b2: RMS 16.48um
- 1.13kHz: bpm0L10y b1-b2: RMS 13.4um