Draft Bubble Chamber Run Plan
 May 1, 2018

1 Pre Beam

1.1 Bubble Chamber Operation

- No beam
- Place neutron source about 1 m from chamber
- Enable bubble chamber and count for 30 min
- Place neutron source about 2 m from chamber
- Enable bubble chamber and count for 30 min
- Counts should be about factor 4 different

1.2 Background Rates

Background rates need to be established to $\delta R \sim 0.25$ counts/hour to be a perturbation on the statistical error for the lowest point. For a background rate of 4 counts/hour, this will require $\mathbf{4 0 - 6 0}$ hours. 10 hours is sufficient for the highest four points.

- No beam
- Enable bubble chamber and count

2 Commissioning

High rate checkout beam is $T=5.25 \mathrm{MeV}, 1 \mu \mathrm{~A}$. This should produce a rate of 1 event per 5 seconds (~ 240 /hour with 10 s recovery time).

- Beam width is $\sigma_{x, y}=1 \mathrm{~mm}$
- Beam is centered on radiator
- Beam energy width is $\sim 3 \mathrm{keV}$
- Beam energy is $5.250 \pm 0.005 \mathrm{MeV}$
- Bubble chamber recovery time 10 s

2.1 Establish Fiducial Region

- Bubble chamber active
- Establish high rate checkout beam for 20 min
- Adjust chamber height so fiducial region is in center of glass

2.2 Inactivity Test

- Bubble chamber set inactive
- Establish high rate checkout beam for 30 min
- No events should be observed on CCD

2.3 Establish Rate and Variation with Position

- Bubble chamber active
- Establish high rate checkout beam for 1 hour
- Move beam 3 mm in one direction
- Establish high rate checkout beam for 1 hour
- Rate should be nominally $10-15 \%$ lower

2.4 Width (also divergence) scan? TBD

- Bubble chamber active
- Increase width to $\sigma_{x, y}=2 \mathrm{~mm}$
- Establish high rate checkout beam for 1 hour
- Rate should be nominally 30% lower

2.5 Recovery Time Scan

- Recovery time set to 8 s
- Bubble chamber active
- Establish high rate checkout beam for 1 hour
- Normalized rate should be the same as initial rate
- Recovery time set to 10 s
- Establish high rate checkout beam for 1 hour
- Normalized rate should be the same as initial rate

2.6 Current Scan

- Bubble chamber active
- Establish $5.25 \mathrm{MeV}, 2 \mu \mathrm{~A}$ beam for 1 hour
- Normalized rate should be the same as initial rate
- Establish $5.25 \mathrm{MeV}, 1 \mu \mathrm{~A}$ beam for 2 hours
- Normalized yield should be the same as initial rate

3 Running

- Start with $5.25,5.15,5.05 \mathrm{MeV}$
- Spend shift on 4.75 MeV to see if signal can be identified
- If not revert to 5 point plan

3.1 6 Point Plan

Shift	Energy	Current	Time
May 10 Swing	Commissioning	8	
May 11 Swing	Commissioning		16
May 12 Day	5.25	1.5	3
	5.15	4.0	3
May 12 Swing	5.05	8.0	6
	4.75	19.0	$8+$
May 13 Day	4.95	19.0	16
May 14 Owl	4.85	50	$48+$
May 16 Day	4.75	50	24

4 Run Statistical Objectives

T_{e}	\bar{E}_{γ}	$I[\mu \mathrm{~A}]$	$t[\mathrm{~h}]$	Yield	Back	$\delta \sigma / \sigma[\%]$	$\mathrm{Y}[/ \mathrm{hr}]$
4.75	4.65	50.0	31.0	558.9	120.1	4.7	18.1
4.85	4.75	50.0	40.3	1517.9	135.1	9.5	37.7
4.95	4.85	19.3	12.7	730.4	46.3	5.6	57.7
5.05	4.95	8.0	5.8	682.0	19.2	5.2	118.3
5.15	5.05	3.4	3.0	708.8	8.2	5.0	233.6
5.25	5.15	0.6	3.0	762.5	3.2	4.5	256.8
95.7							

or

T_{e}	\bar{E}_{γ}	$I[\mu \mathrm{~A}]$	$t[\mathrm{~h}]$	Yield	Back	$\delta \sigma / \sigma[\%]$	$\mathrm{Y}[/ \mathrm{hr}]$
4.85	4.75	50.0	44.1	1659.8	166.2	2.6	37.6
4.95	4.85	28.1	26.4	2141.3	93.3	3.4	81.1
5.05	4.95	10.7	11.3	1687.5	35.5	3.3	149.9
5.15	5.05	3.9	6.9	1757.7	15.1	3.1	256.4
5.25	5.15	0.6	7.4	1891.9	6.0	2.9	256.9
		96.0					

5 Deconvolution, Relative Rates, and Uncertainties

The deconvolution matrix to reconstruct cross sections from normalized yields has for the first three terms

$$
\begin{equation*}
\sigma_{i} \propto \frac{Y_{i}}{L_{i} t_{i}}-1.25 \frac{Y_{i-1}}{L_{i-1} t_{i-1}}+0.125 \frac{Y_{i-2}}{L_{i-2} t_{i-2}} \tag{1}
\end{equation*}
$$

where Y_{i} is the bubble yield for the i th point, L_{i} is the luminosity, and t_{i} is the time spent. Terms without data are assumed to be zero, the lowest energy run has a poorly reconstructed cross section from a single yield, and the first two points are the most relevant.

T $[\mathrm{MeV}]$	R $\left[\mathrm{~s}^{-1}\right]$	R_{i} / R_{i-1}
4.75	1.0×10^{-3}	
4.85	2.2×10^{-3}	2.1
4.95	9.1×10^{-3}	4.1
5.05	5.0×10^{-2}	5.5
5.15	2.8×10^{-1}	5.7
5.25	1.9×10^{-0}	6.8

Table 1: Rate for $10 \mu \mathrm{~A}$

The approximate uncertainty for a point is

$$
\begin{align*}
\delta \sigma & \propto \sqrt{\frac{R_{i}}{L_{i} t_{i}}+\frac{3}{2} \frac{R_{i-1}}{L_{i-1} t_{i-1}}} \tag{2}\\
\delta \sigma / \sigma & =\frac{\sqrt{R_{i} /\left(L_{i} t_{i}\right)+\frac{3}{2} R_{i-1} /\left(L_{i-1} t_{i-1}\right)}}{R_{i}-1.25 R_{i-1}} \tag{3}
\end{align*}
$$

For the lowest two energy points, the relationship from this formula is

$$
\begin{equation*}
\frac{\delta \sigma_{1}}{\sigma_{1}} \approx \frac{4}{3} \frac{\delta \sigma_{0}}{\sigma_{0}} \sqrt{2 \frac{L_{0} t_{0}}{L_{1} t_{1}}+\frac{3}{2}} \tag{4}
\end{equation*}
$$

Without background, the lowest point uncertainty $\delta \sigma_{1} / \sigma_{1}$ is limited to $1.6 \times \delta \sigma_{0} / \sigma_{0}$ in the situation where the integrated luminosity is infinite. This is a consequence of the fact that the relative rates for the lowest two points are only a factor of 2 different.

