Bubble Chamber Planning Meeting

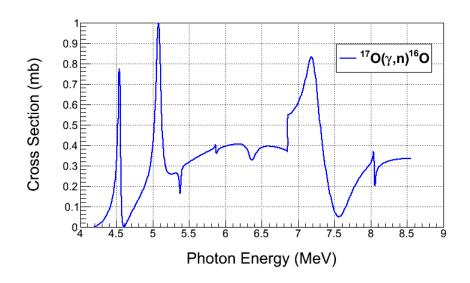
07 August 2013

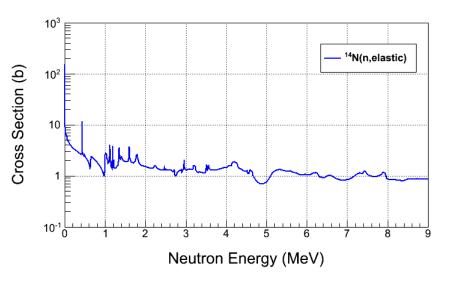
Agenda

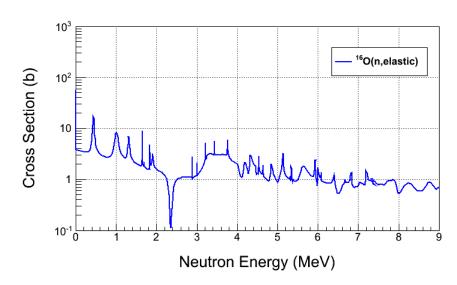
- 1. Bubble Chamber progress at Argonne
- 2. Bubble Chamber cost estimate: procurement and labor
- 3. Running at FEL pros and cons
- Background from ¹⁷O(γ,n)¹⁶O and subsequent neutron elastic scattering with ¹⁶O and ¹⁴N nuclei
- 5. Background from $^{13}C(\gamma,n)^{12}C$ (in case we decide to use CO_2 instead of N_2O)

Cost Estimate

Item	Material Procurement	Shop	Labor
New BPM on Spectrometer line		Pipe + BPM (\$5,000)	P. Francis (1 week)
New Dipole Magnet	Dipole Magnet (\$10,000)		Mapping (1 week) + Alignment (2 weeks)
New Power Supply	Power Supply (\$5,000)		Software (2 days)
New Beamline		Pipes + Pedestals (\$20,000)	Design (6 weeks) Alignment (2 weeks)
Radiator	0.02 and 0.10 mm Cu foils (\$1,000)		Design (1 week)
Sweep Dipole			Mapping (2 days)
Electron Dump	Pure Cu (\$5,000)	Dump + Pipes (\$10,000)	Design (2 week)
Cu Collimator	Pure Cu (\$3,000)	Collimator + Stand (\$5,000)	
Photon Dump	Pure Al (\$1,000)		Design (2 days)
Safety Review			Engineering + EH&Q (\$10,000)
Total	\$25,000	\$40,000	\$55,000


Running in FEL? Cons and Pros

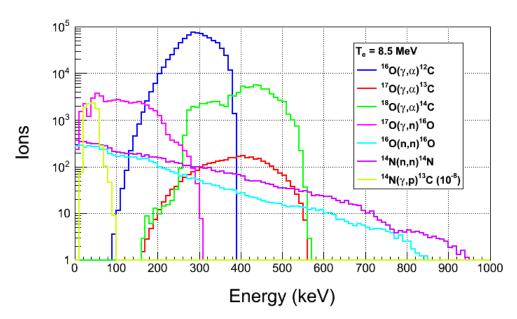

Pros	Cons	
No other users		
9.5 MeV (with FE)		
	Completely new beamline	

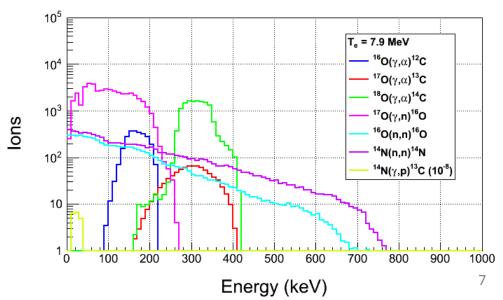

Electron Beam Properties

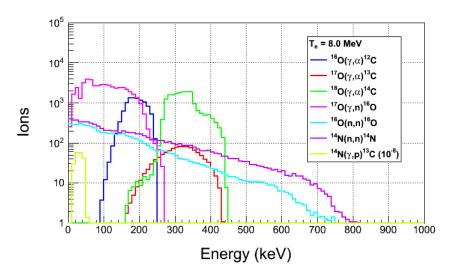
Beam Energy, E (MeV)	3.0 – 8.5
Beam Current (μA)	0.01–200
Absolute Beam Energy	0.67%
Relative Beam Energy	0.1%
Energy Resolution (Spread), σ_E /E	0.06%
Beam Size, σ _{x,y} (mm)	1-2

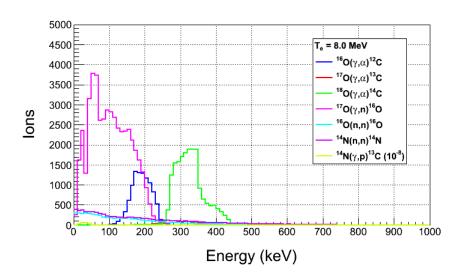
¹⁷O(γ,n)¹⁶O Background

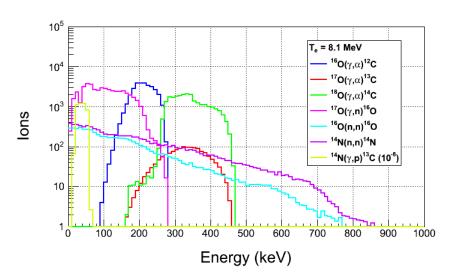
Ion Energy Distribution

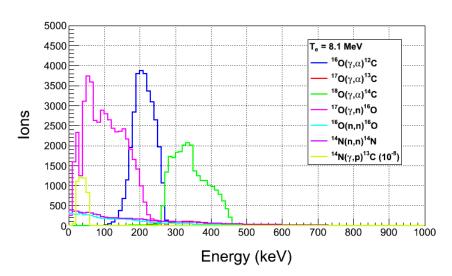

Depletion:

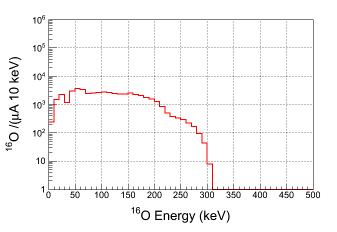

- I. ¹⁷O depletion=5,000
- II. ¹⁸O depletion=5,000

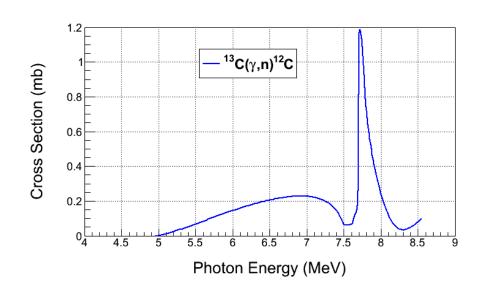

Natural Abundance:

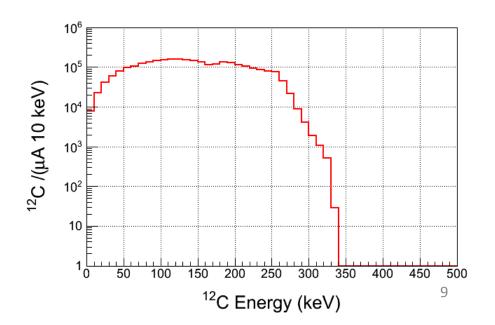

I. ¹⁷O: 0.038%


II. ¹⁸O: 0.205%








¹³C(γ,n)¹²C Background

- Depletion:
 - I. ¹³C depletion=1,000
- Natural Abundance:
 - I. ¹³C: 1.07%

