Bubble Chamber Planning Meeting

07 August 2013

Agenda

- 1. Bubble Chamber progress at Argonne
- 2. Beamline Layout
- 3. Bubble Chamber cost estimate: procurement and labor
- Background from ¹⁷O(γ,n)¹⁶O and subsequent neutron elastic scattering with ¹⁶O and ¹⁴N nuclei
- 5. Background from $^{13}C(\gamma,n)^{12}C$ (in case we decide to use CO_2 instead of N_2O)

Beamline Layout

- I. HARP to measure beam profile
- II. Fast Valve to protect from vacuum failure
- III. Distance between two BMPs = 55" (was 18" for PEPPo)
- IV. Camera for OTR light from Cu foils
- V. Beam Properties at Radiator:

Beam Energy, E (MeV)	3.0 – 8.5
Beam Current (μA)	0.01–200
Absolute Beam Energy	0.1%
Relative Beam Energy	0.1%
Energy Resolution (Spread), σ_E /E	0.06%
Beam Size, σ _{x,y} (mm)	1-2

Cost Estimate

- I. Radiator motion and Sweep Dipole must be in FSD
- II. Cooled: Radiator and Electron Dump.
- III. Uncooled: Photon Collimator and Photon Dump
- IV. Re-use PEPPo radiator and beamline
- V. New beamline components: HARP + Fast Valve
- VI. Summary of labor cost by group:

Group	Labor
Survey & Alignment	3 wks x 2
Magnet Test	1 wk x 2
Engineering Design	12 wks
Software	3 wks x 2
EES	4 wk x 2
EH&Q	4 wks

Item	Material Procurement	Shop	Labor
New BPM on Spect. line		Pipe + BPM (\$5,000)	P. Francis (1 week)
New Dipole Magnet	Dipole Magnet (\$10,000)		Mapping (1 week) EESDC (1 week) Alignment (2 days)
New Power Supply	Power Supply (\$5,000)		Software (2 weeks)
New Beamline		Pipes + Pedestals (\$20,000)	Design (6 weeks) Alignment (1 week) Software (4 weeks)
Radiator (cooled ladder, FSD)	0.02 and 0.10 mm Cu foils (\$1,000)	\$2,500	Design (2 week) Alignment (2 days)
Sweep Dipole	?	?	?
Electron Dump	Pure Cu (\$5,000)	Dump + Pipes (\$10,000)	Design (2 week) Alignment (1 day)
Cu Collimator	Pure Cu (\$3,000)	Collimator + Stand (\$5,000)	Design (1 week) Alignment (1 day)
Photon Dump & Stand	Pure Al (\$1,000)	\$2,500	Design (1 week) Alignment (1 day)
Safety Review			4 weeks
Install			6 weeks
Bubble Chamber			Alignment (1 week)
Total	\$25,000	\$45,000	\$80,000

¹⁷O(γ,n)¹⁶O Background

Ion Energy Distribution

Depletion:

- I. ¹⁷O depletion=5,000
- II. ¹⁸O depletion=5,000

Natural Abundance:

I. ¹⁷O: 0.038%

II. ¹⁸O: 0.205%

¹³C(γ,n)¹²C Background

- Depletion:
 - I. ¹³C depletion=1,000
- Natural Abundance:
 - I. ¹³C: 1.07%

