Josh Yoskowitz

Analyzing electron beam using BPM from "Lecture Notes on Topics in Accelerator Physics, Section 4: Fast Ion Instability" by Alex Chao, November 2002 SLAC-PUB-9574

Assume we have a beam position monitor (BPM) located at s = 0 along the accelerator. Let an electron bunch of length l circulate in a storage ring of circumference $C = cT_0$. Since the beam is bunched, the BPM will measure an alternating current signal via pick-up electrodes. Based on the amplitudes of the signals on the electrodes, the position of the beam can be determined. The time-dependent signal seen by the BPM is

signal (t) =
$$\sum_{k=0}^{\infty} y_e \left(kC | ct - kC \right) |_{0 < ct - kC < l}$$

where y_e is the transverse distance of an electron from the beam centroid and k sums over multiple turns. We can take a Fourier transform of the BPM signal into frequency space:

spectrum (\Omega)
$$\propto \int_{0}^{\infty} dt e^{-i\Omega t} \text{signal}(t)$$

$$= \sum_{k=0}^{\infty} \int_{0}^{l/c} dt' e^{-i\Omega(t'+kT_0)} y_e(kC|ct')$$

$$= \sum_{k=0}^{\infty} e^{-i(\Omega+\omega_\beta)kT_0} \int_{0}^{l/c} dt' e^{-i(\Omega-\omega_I)t'} \tilde{y}_e(kC|ct')$$

$$= \sum_{k=0}^{\infty} e^{-i(\Omega+\omega_\beta)kT_0} \int_{0}^{l/c} dt' e^{-i(\Omega-\omega_I)t'} \frac{e^{\eta'}}{\sqrt{2\pi\eta'}}$$

where $\eta' = t' \sqrt{K \omega_I k C / 2 \omega_\beta l}$. From the second to third step, the form of y_e was used:

$$y_e(s|z) = \tilde{y}_e(s|z) e^{-i\omega_\beta s/c + i\omega_I z/c}$$

The integral in the last step is of the form:

$$I = \int_{0}^{l/c} dt' \frac{e^{(B-iA)t'}}{\sqrt{2\pi Bt'}} = \frac{1}{\sqrt{2\pi B}} \left(-B + iA\right)^{-\frac{1}{2}} \gamma\left(\frac{1}{2}, \left(-B + iA\right)\frac{l}{c}\right)$$

where $A = \Omega - \omega_I$ and $B = \sqrt{K\omega_I kC/2\omega_\beta l}$ and $\gamma(\alpha, x)$ is the lower incomplete Gamma function:

$$\gamma\left(\alpha,x\right) = \int\limits_{0}^{x} t^{\alpha-1} e^{-t} dt$$

For $|x| \gg 1$, $\gamma(\alpha, x) \approx -x^{\alpha-1}e^{-x}$. Thus, with $|A|l/c \gg Bl/c \gg 1$ (from the validity criterion $\frac{\omega_I l}{c} \gg \eta \gg 1$ with $\eta = \frac{z}{c} \sqrt{\frac{K\omega_I s}{2\omega_\beta l}}$), $I \approx \sqrt{\frac{l/c}{c}} e^{Bl/c} \left(e^{-iAl/2c} \sin \frac{Al}{2c} \right)$

$$I \approx \sqrt{\frac{l/c}{2\pi B}} e^{Bl/c} \left(\frac{e^{-iAl/2c} \sin \frac{Al}{2c}}{Al/2c}\right)$$

We can then plug this into the equation for spectrum (Ω). If we measure the signal in a small window around a large $k = \overline{k}$ (note that the signal obviously diverges for $k \to \infty$), we have

$$|\text{spectrum}(\Omega)| \propto y_0 \sqrt{\frac{l/c}{2\pi\overline{B}}} e^{\overline{B}l/c} \left| \frac{\sin \frac{(\Omega - \omega_I)l}{2c}}{(\Omega - \omega_I) l/2c} \right| \sum_{p=-\infty}^{\infty} \delta \left(\Omega + \omega_\beta - p\omega_0 \right)$$

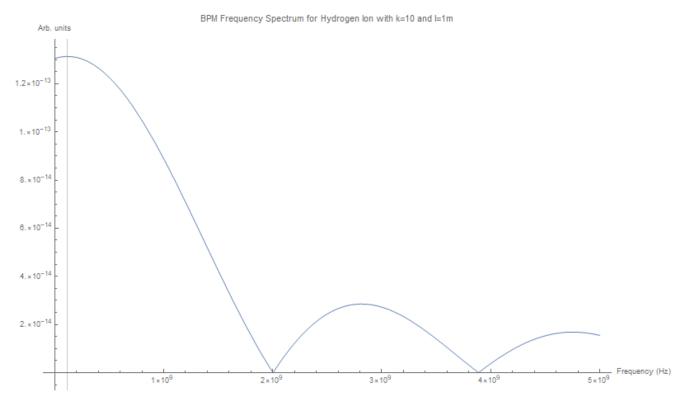
where $\omega_0 = 2\pi/T_0$ is the revolution angular frequency, $\overline{B} = \sqrt{K\omega_I \overline{k}C/2\omega_\beta l}$ (similar to η above), and we have plugged in $A = \Omega - \omega_I$. We see that the electron beam spectrum contains δ -function peaks at $\Omega = p\omega_0 - \omega_\beta$ corresponding to the lower betatron sidebands of all revolution harmonics. It also contains a broad envelope $\frac{\sin\left[(\Omega - \omega_I) l/2c\right]}{(\Omega - \omega_I) l/2c}$ around $\Omega = \omega_I$, the characteristic ion frequency, with width $\Delta\Omega \pm \pi c/l$. Thus, for longer bunches, the width of the envelope decreases and becomes more defined. The entire spectrum also grows with time according to the factor $e^{\overline{B}l/c}/\sqrt{2\pi\overline{B}l/c}$, as we would expect. To see what this spectrum looks like, we can plot |spectrum (Ω)| as a function of Ω for several cases. First, we can assume that the beam is made up of small bunches, which corresponds to $l \ll C = cT_0 = \frac{2\pi c}{\omega_0}$. Then, with sinc $(x) = \frac{\sin(x)}{x}$ being the unnormalized sinc function, we have

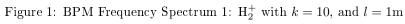
$$\frac{\operatorname{spectrum}\left(\Omega\right)|}{y_{0}} = \sqrt{\frac{l/c}{2\pi\overline{B}}} e^{\overline{B}l/c} \left|\operatorname{sinc}\left[\left(\Omega - \omega_{I}\right)l/2c\right]\right| \sum_{p=-\infty}^{\infty} \delta\left(\Omega + \omega_{\beta} - p\omega_{0}\right)$$

Lets plug in some reasonable numbers: $\omega_{\beta} = 5$ MHz, $K = \frac{4\Sigma n N c^2 r_e}{\gamma a^2}$, $6.5 \times 10^7 \text{s}^{-2}$, C = 2000m, $y_0 = 1$, $T_0 = C/c = 6.7 \mu$ s, and $\omega_0 \approx 0.942$ MHz (the revolution angular frequency). We'll make plots of $\frac{|\text{spectrum}(\Omega)|}{y_0}$ vs. Ω for various values for \bar{k} , l, and ω_I . We'll consider the characteristic frequencies $\omega_I = \sqrt{\frac{2Nr_pc^2}{la^2A}}$ for H_2^+ , CH_4^+ , N_2^+ , and CO_2^+ with $N = 10^{11}$ electrons, a = 1mm, $r_p = 1.54 \times 10^{-16}$ cm, and $A = \frac{M}{m_p}$ ($A_{H_2^+} = 2$, $A_{CH_4^+} = 16$, $A_{N_2^+} = 28$, $A_{CO_2^+} = 44$). Below is a table of parameters/calculated values for each plot:

Plot	\overline{k}	$\omega_I({ m Hz})$	l(m)	$\bar{B}(\mathrm{Hz})$
1	10^{1}	$1.18 \times 10^8 \ ({\rm H_2^+})$	1	3.91×10^6
2	10^{1}	$4.16 \times 10^7 \; (CH_4^+)$	1	2.32×10^6
3	10^{1}	$3.15 \times 10^7 (N_2^+)$	1	2.02×10^6
4	10^{1}	$2.51 \times 10^7 (\rm{CO}_2^+)$	1	1.81×10^6
5	10^{2}	$1.18 \times 10^8 \ ({\rm H_2^+})$	1	1.24×10^7
6	10^{4}	$1.18 \times 10^8 \ ({\rm H_2^+})$	1	1.24×10^8
7	10^{1}	$3.72 \times 10^7 \ ({\rm H_2^+})$	10	6.96×10^5
8	10^{1}	$1.18 \times 10^7 \ ({\rm H_2^+})$	100	1.24×10^5
9	10^{1}	$4.16 \times 10^6 (CH_4^+)$	100	7.36×10^4
10	10^{1}	$3.15 \times 10^6 (N_2^+)$	100	6.40×10^4
11	10^{1}	$2.51 \times 10^6 (\mathrm{CO}_2^+)$	100	5.71×10^4
12	10^{1}	All Four ω_I	100	N/A

Table 1: Calculated values for \overline{B} for various \overline{k}





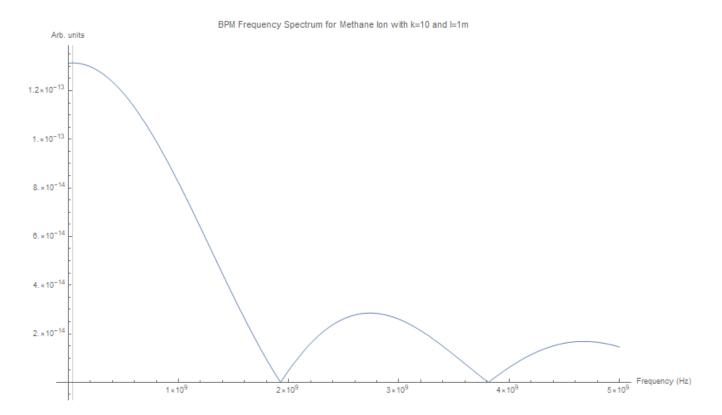


Figure 2: BPM Frequency Spectrum 2: CH_4^+ with k = 10 and l = 1m

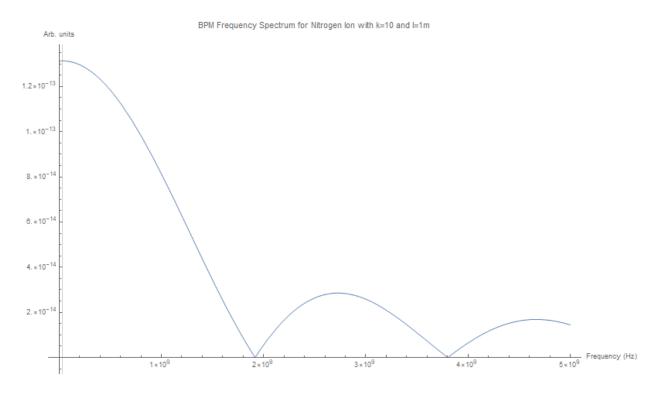


Figure 3: BPM Frequency Spectrum 3: N_2^+ with k = 10 and l = 1m

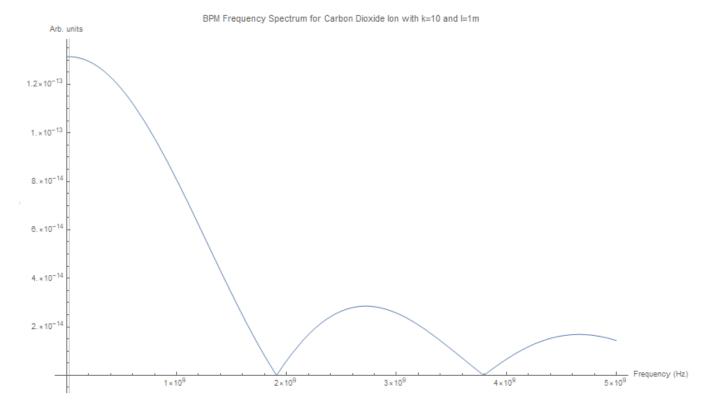


Figure 4: BPM Frequency Spectrum 4: CO_2^+ with k = 10 and l = 1m

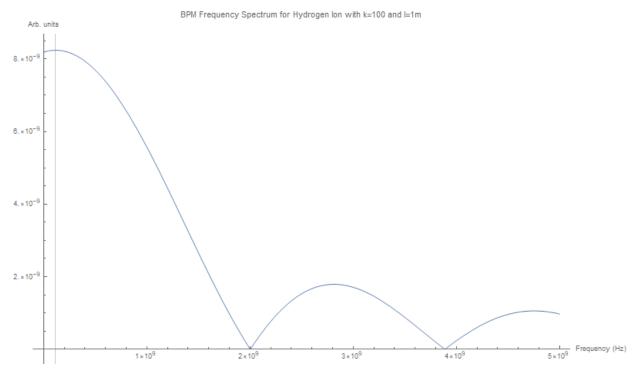


Figure 5: BPM Frequency Spectrum 5: H_2^+ with k = 100 and l = 1m

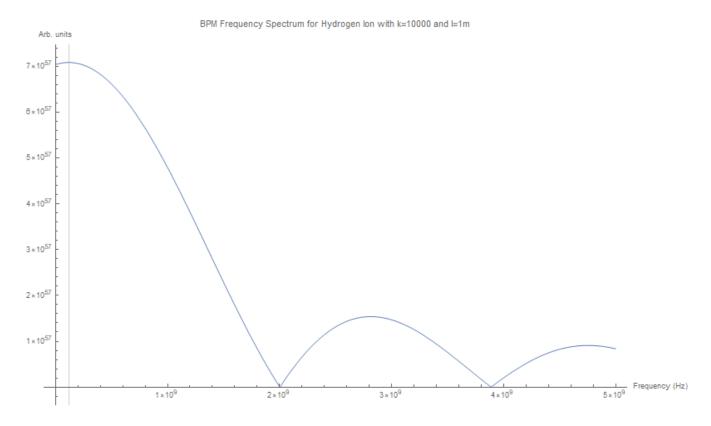


Figure 6: BPM Frequency Spectrum 6: H_2^+ with k=10000 and $l=1\mathrm{m}$

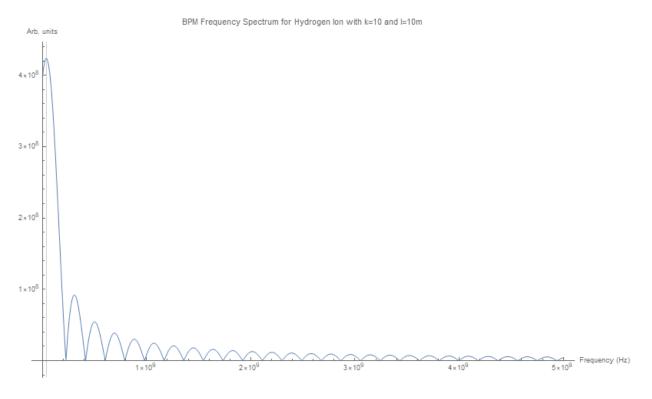


Figure 7: BPM Frequency Spectrum 7: H_2^+ with k = 10 and l = 10m

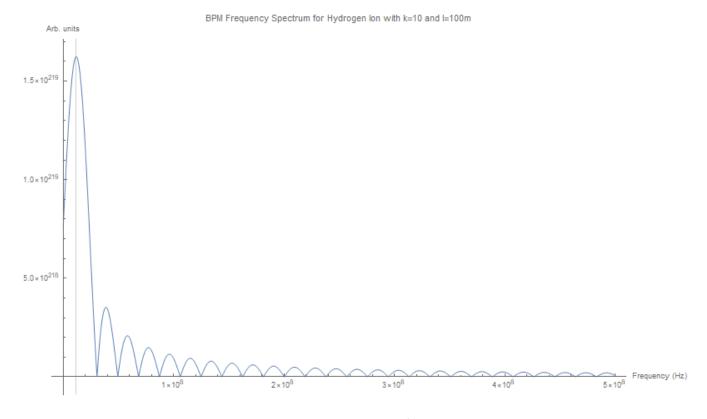


Figure 8: BPM Frequency Spectrum 8: H_2^+ with k = 10, l = 100m

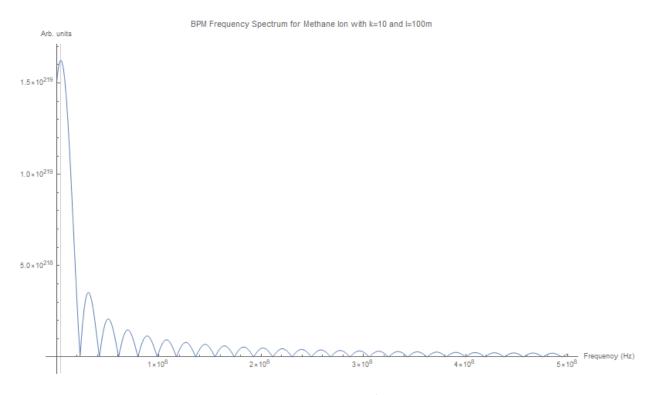


Figure 9: BPM Frequency Spectrum 9: CH_4^+ with k = 10 and l = 100m

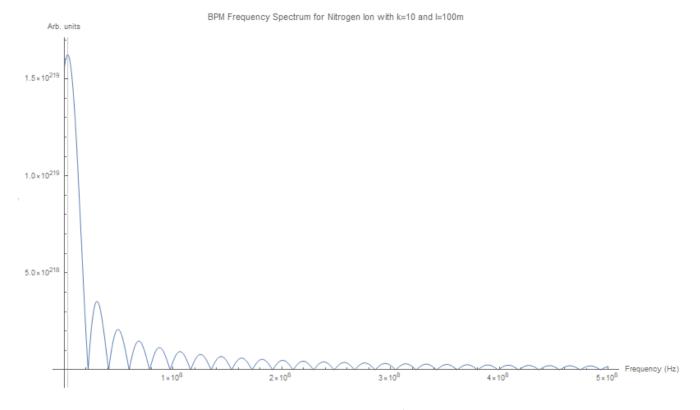


Figure 10: BPM Frequency Spectrum 10: N_2^+ with k=10 and $l=100\mathrm{m}$

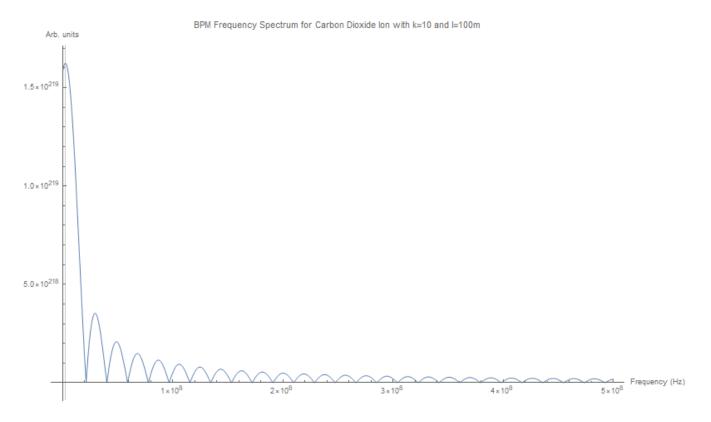


Figure 11: BPM Frequency Spectrum 11: CO_2^+ with k = 10 and l = 100m

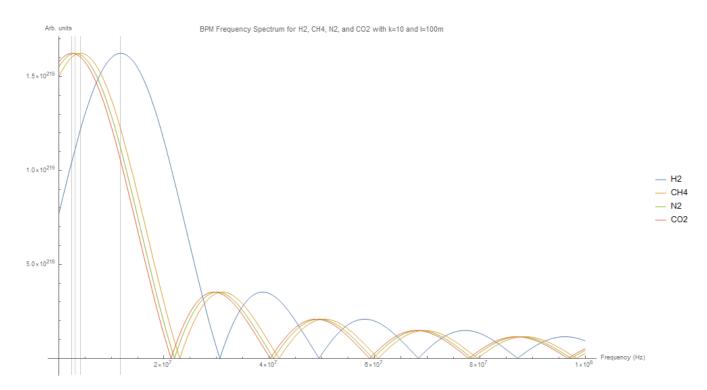


Figure 12: BPM Frequency Spectrum 12: H_2^+ , CH_4^+ , N_2^+ and CO_2^+ with k = 10 and l = 100m