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Assume we have a beam position monitor (BPM) located at s = 0 along the accelerator. Let an electron bunch of length
l circulate in a storage ring of circumference C = cT0. Since the beam is bunched, the BPM will measure an alternating
current signal via pick-up electrodes. Based on the amplitudes of the signals on the electrodes, the position of the beam can
be determined. The time-dependent signal seen by the BPM is

signal (t) =

∞∑
k=0

ye (kC|ct− kC)|0<ct−kC<l

where ye is the transverse distance of an electron from the beam centroid and k sums over multiple turns. We can take a
Fourier transform of the BPM signal into frequency space:
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∞w
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0
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′

√
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where η′ = t′
√
KωIkC/2ωβl. From the second to third step, the form of ye was used:

ye (s|z) = ỹe (s|z) e−iωβs/c+iωIz/c

The integral in the last step is of the form:
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)
where A = Ω− ωI and B =

√
KωIkC/2ωβl and γ (α, x) is the lower incomplete Gamma function:

γ (α, x) =

xw

0

tα−1e−tdt

For |x| � 1, γ (α, x) ≈ −xα−1e−x. Thus, with|A| l/c � Bl/c � 1 (from the validity criterion
ωI l

c
� η � 1 with

η =
z

c

√
KωIs

2ωβl
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I ≈
√
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2πB
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2c
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)
We can then plug this into the equation for spectrum (Ω). If we measure the signal in a small window around a large k = k
(note that the signal obviously diverges for k →∞), we have

|spectrum (Ω)| ∝ y0

√
l/c

2πB
eBl/c

∣∣∣∣∣ sin (Ω−ωI)l
2c

(Ω− ωI) l/2c

∣∣∣∣∣
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δ (Ω + ωβ − pω0)

1



where ω0 = 2π/T0 is the revolution angular frequency, B =
√
KωIkC/2ωβl (similar to η above), and we have plugged in

A = Ω − ωI . We see that the electron beam spectrum contains δ-function peaks at Ω = pω0 − ωβ corresponding to the

lower betatron sidebands of all revolution harmonics. It also contains a broad envelope
sin [(Ω− ωI) l/2c]

(Ω− ωI) l/2c
around Ω = ωI ,

the characteristic ion frequency, with width ∆Ω ± πc/l. Thus, for longer bunches, the width of the envelope decreases and

becomes more de�ned. The entire spectrum also grows with time according to the factor eBl/c/
√

2πBl/c, as we would expect.

To see what this spectrum looks like, we can plot |spectrum (Ω)| as a function of Ω for several cases. First, we can assume

that the beam is made up of small bunches, which corresponds to l � C = cT0 =
2πc

ω0
. Then, with sinc (x) =

sin (x)

x
being

the unnormalized sinc function, we have

|spectrum (Ω)|
y0

=

√
l/c

2πB
eBl/c |sinc [(Ω− ωI) l/2c]|

∞∑
p=−∞

δ (Ω + ωβ − pω0)

Lets plug in some reasonable numbers: ωβ = 5MHz, K =
4ΣnNc2re

γa2
, 6.5 × 107s−2, C = 2000m, y0 = 1, T0 = C/c = 6.7µs,

and ω0 ≈ 0.942MHz (the revolution angular frequency). We'll make plots of
|spectrum (Ω)|

y0
vs. Ω for various values for k̄, l,

and ωI . We'll consider the characteristic frequencies ωI =

√
2Nrpc

2

la2A
for H+

2 , CH
+
4 , N

+
2 ,and CO+

2 with N = 1011 electrons,

a = 1mm, rp = 1.54 × 10−16cm, and A =
M

mp
(AH+

2
= 2, ACH+

4
= 16, AN+

2
= 28, ACO+

2
= 44). Below is a table of

parameters/calculated values for each plot:

Plot k ωI(Hz) l(m) B̄(Hz)
1 101 1.18× 108 (H+

2 ) 1 3.91× 106

2 101 4.16× 107 (CH+
4 ) 1 2.32× 106

3 101 3.15× 107 (N+
2 ) 1 2.02× 106

4 101 2.51× 107 (CO+
2 ) 1 1.81× 106

5 102 1.18× 108 (H+
2 ) 1 1.24× 107

6 104 1.18× 108 (H+
2 ) 1 1.24× 108

7 101 3.72× 107 (H+
2 ) 10 6.96× 105

8 101 1.18× 107 (H+
2 ) 100 1.24× 105

9 101 4.16× 106 (CH+
4 ) 100 7.36× 104

10 101 3.15× 106 (N+
2 ) 100 6.40× 104

11 101 2.51× 106 (CO+
2 ) 100 5.71× 104

12 101 All Four ωI 100 N/A

Table 1: Calculated values for B for various k

2



Figure 1: BPM Frequency Spectrum 1: H+
2 with k = 10, and l = 1m

Figure 2: BPM Frequency Spectrum 2: CH+
4 with k = 10 and l = 1m
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Figure 3: BPM Frequency Spectrum 3: N+
2 with k = 10 and l = 1m

Figure 4: BPM Frequency Spectrum 4: CO+
2 with k = 10 and l = 1m
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Figure 5: BPM Frequency Spectrum 5: H+
2 with k = 100 and l = 1m

Figure 6: BPM Frequency Spectrum 6: H+
2 with k = 10000 and l = 1m
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Figure 7: BPM Frequency Spectrum 7: H+
2 with k = 10 and l = 10m

Figure 8: BPM Frequency Spectrum 8: H+
2 with k = 10, l = 100m
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Figure 9: BPM Frequency Spectrum 9: CH+
4 with k = 10 and l = 100m

Figure 10: BPM Frequency Spectrum 10: N+
2 with k = 10 and l = 100m

7



Figure 11: BPM Frequency Spectrum 11: CO+
2 with k = 10 and l = 100m

Figure 12: BPM Frequency Spectrum 12: H+
2 , CH

+
4 , N

+
2 and CO+

2 with k = 10 and l = 100m
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