Josh Yoskowitz

Analyzing electron beam using BPM from "Lecture Notes on Topics in Accelerator Physics, Section 4: Fast Ion Instability" by Alex Chao, November 2002 SLAC-PUB-9574

Assume we have a beam position monitor (BPM) located at s=0 along the accelerator. Let an electron bunch of length l circulate in a storage ring of circumference $C=cT_0$. Since the beam is bunched, the BPM will measure an alternating current signal via pick-up electrodes. Based on the amplitudes of the signals on the electrodes, the position of the beam can be determined. The time-dependent signal seen by the BPM is

$$\operatorname{signal}(t) = \sum_{k=0}^{\infty} y_e \left(kC | ct - kC \right) |_{0 < ct - kC < l}$$

where y_e is the transverse distance of an electron from the beam centroid and k sums over multiple turns. We can take a Fourier transform of the BPM signal into frequency space:

$$\begin{split} \operatorname{spectrum}\left(\Omega\right) &\propto \int\limits_{0}^{\infty} dt e^{-i\Omega t} \operatorname{signal}\left(t\right) \\ &= \sum_{k=0}^{\infty} \int\limits_{0}^{l/c} dt' e^{-i\Omega\left(t'+kT_{0}\right)} y_{e}\left(kC|ct'\right) \\ &= \sum_{k=0}^{\infty} e^{-i(\Omega+\omega_{\beta})kT_{0}} \int\limits_{0}^{l/c} dt' e^{-i(\Omega-\omega_{I})t'} \tilde{y}_{e}\left(kC|ct'\right) \\ &= y_{0} \sum_{k=0}^{\infty} e^{-i(\Omega+\omega_{\beta})kT_{0}} \int\limits_{0}^{l/c} dt' e^{-i(\Omega-\omega_{I})t'} \frac{e^{\eta'}}{\sqrt{2\pi\eta'}} \end{split}$$

where $\eta' = t' \sqrt{K\omega_I kC/2\omega_\beta l}$. From the second to third step, the form of y_e was used:

$$y_e(s|z) = \tilde{y}_e(s|z) e^{-i\omega_\beta s/c + i\omega_I z/c}$$

From the third to the fourth step, the form of \tilde{y}_e in the asymptotic regime $(\eta \gg 1)$ was used:

$$\tilde{y}_e\left(s|z\right) = y_0 I_0\left(\eta\right) \approx y_0 \frac{e^{\eta}}{\sqrt{2\pi\eta}}$$

The integral in the last step is of the form:

$$I = \int_{0}^{l/c} dt' \frac{e^{(B-iA)t'}}{\sqrt{2\pi Bt'}} = \frac{1}{\sqrt{2\pi B}} \left(-B + iA \right)^{-\frac{1}{2}} \gamma \left(\frac{1}{2}, (-B+iA) \frac{l}{c} \right)$$

where $A = \Omega - \omega_I$ and $B = \sqrt{K\omega_I kC/2\omega_\beta l}$ and $\gamma(\alpha, x)$ is the lower incomplete Gamma function:

$$\gamma\left(\alpha,x\right) = \int_{0}^{x} t^{\alpha-1}e^{-t}dt$$

For $|x| \gg 1$, $\gamma(\alpha, x) \approx -x^{\alpha-1}e^{-x}$. Thus, with $|A| l/c \gg Bl/c \gg 1$ (from the validity criterion $\frac{\omega_I l}{c} \gg \eta \gg 1$ with $\eta = \frac{z}{c} \sqrt{\frac{K\omega_I s}{2\omega_\beta l}}$),

$$I \approx \sqrt{\frac{l/c}{2\pi B}} e^{Bl/c} \left(\frac{e^{-iAl/2c} \sin \frac{Al}{2c}}{Al/2c} \right)$$

We can then plug this into the equation for spectrum (Ω) . If we measure the signal in a small window around a large $k = \overline{k}$ (note that the signal obviously diverges for $k \to \infty$), we have

$$|\operatorname{spectrum}(\Omega)| \propto y_0 \sqrt{\frac{l/c}{2\pi \overline{B}}} e^{\overline{B}l/c} \left| \frac{\sin \frac{(\Omega - \omega_I)l}{2c}}{(\Omega - \omega_I)l/2c} \right| \sum_{p=-\infty}^{\infty} \delta \left(\Omega + \omega_\beta - p\omega_0\right)$$

where $\omega_0=2\pi/T_0$ is the revolution angular frequency, $\overline{B}=\sqrt{K\omega_I\overline{k}C/2\omega_\beta l}$ (similar to η above), and we have plugged in $A=\Omega-\omega_I$. We see that the electron beam spectrum contains δ -function peaks at $\Omega=p\omega_0-\omega_\beta$ corresponding to the lower betatron sidebands of all revolution harmonics. It also contains a broad envelope $\frac{\sin\left[(\Omega-\omega_I)\,l/2c\right]}{(\Omega-\omega_I)\,l/2c}$ around $\Omega=\omega_I$, the characteristic ion frequency, with width $\Delta\Omega\pm\pi c/l$. Thus, for longer bunches, the width of the envelope decreases and becomes more defined. The entire spectrum also grows with time according to the factor $e^{\overline{B}l/c}/\sqrt{2\pi\overline{B}l/c}$, as we would expect. To see what this spectrum looks like, we can plot |spectrum (Ω) | as a function of Ω for several cases. Let's plug in some reasonable numbers: $\omega_\beta=5\text{MHz},~K=\frac{4\Sigma nNc^2r_e}{\gamma a^2}$, $6.5\times10^7\text{s}^{-2}$, $C=cT_0=\frac{2\pi c}{\omega_0}=2000\text{m}$, $T_0=C/c=6.7\mu\text{s}$, and $\omega_0\approx0.942\text{MHz}$ (the revolution angular frequency). We'll make plots of $\frac{|\text{spectrum}\,(\Omega)|}{y_0}$ vs. Ω for various values for \bar{k} , l, and ω_I . We'll consider the characteristic frequencies $\omega_I=\sqrt{\frac{2Nr_pc^2}{la^2A}}$ for H_2^+ , CH_4^+ , N_2^+ , and CO_2^+ with $N=10^{11}$ electrons, $a=1\text{mm},~r_p=1.54\times10^{-16}\text{cm}$, and $A=\frac{M}{m_p}$ ($A_{H_2^+}=2$, $A_{CH_4^+}=16$, $A_{N_2^+}=28$, $A_{CO_2^+}=44$). Below is a table of parameters/calculated values for each plot:

Plot	\overline{k}	$\omega_I({ m Hz})$	l(m)	$ar{B}(\mathrm{Hz})$
1	10^{1}	$1.18 \times 10^8 \; (\mathrm{H_2^+})$	1	3.91×10^{6}
2	10^{1}	$4.16 \times 10^7 \; (CH_4^+)$	1	2.32×10^{6}
3	10^{1}	$3.15 \times 10^7 (N_2^+)$	1	2.02×10^{6}
4	10^{1}	$2.51 \times 10^7 \; (\mathrm{CO}_2^+)$	1	1.81×10^{6}
5	10^{2}	$1.18 \times 10^8 \; (\mathrm{H_2^+})$	1	1.24×10^{7}
6	10^4	$1.18 \times 10^8 \; (\mathrm{H_2^+})$	1	1.24×10^{8}
7	10^{1}	$3.72 \times 10^7 \; (\mathrm{H_2^+})$	10	6.96×10^{5}
8	10^{1}	$1.18 \times 10^7 \; (\mathrm{H_2^+})$	100	1.24×10^{5}
9	10^{1}	$4.16 \times 10^6 \; (CH_4^+)$	100	7.36×10^4
10	10^{1}	$3.15 \times 10^6 \; (N_2^+)$	100	6.40×10^4
11	10^{1}	$2.51 \times 10^6 \; (\mathrm{CO_2^+})$	100	5.71×10^4
12	10^{1}	All Four ω_I	100	N/A

Table 1: Calculated values for \overline{B} for various \overline{k}

Figure 1: BPM Frequency Spectrum 1: $\mathrm{H_2^+}$ with k=10, and $l=1\mathrm{m}$

Figure 2: BPM Frequency Spectrum 2: CH_4^+ with k=10 and l=1m

Figure 3: BPM Frequency Spectrum 3: $\mathrm{N_2^+}$ with k=10 and $l=1\mathrm{m}$

Figure 4: BPM Frequency Spectrum 4: CO_2^+ with k=10 and $l=1\mathrm{m}$

Figure 5: BPM Frequency Spectrum 5: $\mathrm{H_2^+}$ with k=100 and $l=1\mathrm{m}$

Figure 6: BPM Frequency Spectrum 6: ${\rm H_2^+}$ with k=10000 and $l=1{\rm m}$

Figure 7: BPM Frequency Spectrum 7: $\mathrm{H_2^+}$ with k=10 and $l=10\mathrm{m}$

Figure 8: BPM Frequency Spectrum 8: $\mathrm{H_2^+}$ with $k=10,\,l=100\mathrm{m}$

Figure 9: BPM Frequency Spectrum 9: $\mathrm{CH_4^+}$ with k=10 and $l=100\mathrm{m}$

Figure 10: BPM Frequency Spectrum 10: $\mathrm{N_2^+}$ with k=10 and $l=100\mathrm{m}$

Figure 11: BPM Frequency Spectrum 11: CO_2^+ with k=10 and $l=100\mathrm{m}$

Figure 12: BPM Frequency Spectrum 12: $\mathrm{H_2^+},~\mathrm{CH_4^+},~\mathrm{N_2^+}$ and $\mathrm{CO_2^+}$ with k=10 and $l=100\mathrm{m}$