Josh Yoskowitz
Analyzing electron beam using BPM from "Lecture Notes on Topics in Accelerator Physics, Section 4: Fast Ion Instability" by Alex Chao, November 2002 SLAC-PUB-9574

Assume we have a beam position monitor (BPM) located at $s=0$ along the accelerator. Let an electron bunch of length l circulate in a storage ring of circumference $C=c T_{0}$. Since the beam is bunched, the BPM will measure an alternating current signal via pick-up electrodes. Based on the amplitudes of the signals on the electrodes, the position of the beam can be determined. The time-dependent signal seen by the BPM is

$$
\operatorname{signal}(t)=\left.\sum_{k=0}^{\infty} y_{e}(k C \mid c t-k C)\right|_{0<c t-k C<l}
$$

where y_{e} is the transverse distance of an electron from the beam centroid and k sums over multiple turns. We can take a Fourier transform of the BPM signal into frequency space:

$$
\begin{aligned}
\operatorname{spectrum}(\Omega) & \propto \int_{0}^{\infty} d t e^{-i \Omega t} \operatorname{signal}(t) \\
& =\sum_{k=0}^{\infty} \int_{0}^{l / c} d t^{\prime} e^{-i \Omega\left(t^{\prime}+k T_{0}\right)} y_{e}\left(k C \mid c t^{\prime}\right) \\
& =\sum_{k=0}^{\infty} e^{-i\left(\Omega+\omega_{\beta}\right) k T_{0}} \int_{0}^{l / c} d t^{\prime} e^{-i\left(\Omega-\omega_{I}\right) t^{\prime}} \tilde{y}_{e}\left(k C \mid c t^{\prime}\right) \\
& =y_{0} \sum_{k=0}^{\infty} e^{-i\left(\Omega+\omega_{\beta}\right) k T_{0}} \int_{0}^{l / c} d t^{\prime} e^{-i\left(\Omega-\omega_{I}\right) t^{\prime}} \frac{e^{\eta^{\prime}}}{\sqrt{2 \pi \eta^{\prime}}}
\end{aligned}
$$

where $\eta^{\prime}=t^{\prime} \sqrt{K \omega_{I} k C / 2 \omega_{\beta} l}$. From the second to third step, the form of y_{e} was used:

$$
y_{e}(s \mid z)=\tilde{y}_{e}(s \mid z) e^{-i \omega_{\beta} s / c+i \omega_{I} z / c}
$$

From the third to the fourth step, the form of \tilde{y}_{e} in the asymptotic regime $(\eta \gg 1)$ was used:

$$
\tilde{y}_{e}(s \mid z)=y_{0} I_{0}(\eta) \approx y_{0} \frac{e^{\eta}}{\sqrt{2 \pi \eta}}
$$

The integral in the last step is of the form:

$$
I=\int_{0}^{l / c} d t^{\prime} \frac{e^{(B-i A) t^{\prime}}}{\sqrt{2 \pi B t^{\prime}}}=\frac{1}{\sqrt{2 \pi B}}(-B+i A)^{-\frac{1}{2}} \gamma\left(\frac{1}{2},(-B+i A) \frac{l}{c}\right)
$$

where $A=\Omega-\omega_{I}$ and $B=\sqrt{K \omega_{I} k C / 2 \omega_{\beta} l}$ and $\gamma(\alpha, x)$ is the lower incomplete Gamma function:

$$
\gamma(\alpha, x)=\int_{0}^{x} t^{\alpha-1} e^{-t} d t
$$

For $|x| \gg 1, \gamma(\alpha, x) \approx-x^{\alpha-1} e^{-x}$. Thus, with $|A| l / c \gg B l / c \gg 1$ (from the validity criterion $\frac{\omega_{I} l}{c} \gg \eta \gg 1$ with $\left.\eta=\frac{z}{c} \sqrt{\frac{K \omega_{I} s}{2 \omega_{\beta} l}}\right)$,

$$
I \approx \sqrt{\frac{l / c}{2 \pi B}} e^{B l / c}\left(\frac{e^{-i A l / 2 c} \sin \frac{A l}{2 c}}{A l / 2 c}\right)
$$

We can then plug this into the equation for spectrum (Ω). If we measure the signal in a small window around a large $k=\bar{k}$ (note that the signal obviously diverges for $k \rightarrow \infty$), we have

$$
|\operatorname{spectrum}(\Omega)| \propto y_{0} \sqrt{\frac{l / c}{2 \pi \bar{B}}} e^{\bar{B} l / c}\left|\frac{\sin \frac{\left(\Omega-\omega_{I}\right) l}{2 c}}{\left(\Omega-\omega_{I}\right) l / 2 c}\right| \sum_{p=-\infty}^{\infty} \delta\left(\Omega+\omega_{\beta}-p \omega_{0}\right)
$$

where $\omega_{0}=2 \pi / T_{0}$ is the revolution angular frequency, $\bar{B}=\sqrt{K \omega_{I} \bar{k} C / 2 \omega_{\beta} l}$ (similar to η above), and we have plugged in $A=\Omega-\omega_{I}$. We see that the electron beam spectrum contains δ-function peaks at $\Omega=p \omega_{0}-\omega_{\beta}$ corresponding to the lower betatron sidebands of all revolution harmonics. It also contains a broad envelope $\frac{\sin \left[\left(\Omega-\omega_{I}\right) l / 2 c\right]}{\left(\Omega-\omega_{I}\right) l / 2 c}$ around $\Omega=\omega_{I}$, the characteristic ion frequency, with width $\Delta \Omega \pm \pi c / l$. Thus, for longer bunches, the width of the envelope decreases and becomes more defined. The entire spectrum also grows with time according to the factor $e^{\bar{B} l / c} / \sqrt{2 \pi \bar{B} l / c}$, as we would expect.

To see what this spectrum looks like, we can plot $|\operatorname{spectrum}(\Omega)|$ as a function of Ω for several cases. Let's plug in some reasonable numbers: $\omega_{\beta}=5 \mathrm{MHz}, K=\frac{4 \Sigma n N c^{2} r_{e}}{\gamma a^{2}}, 6.5 \times 10^{7} \mathrm{~s}^{-2}, C=c T_{0}=\frac{2 \pi c}{\omega_{0}}=2000 \mathrm{~m}, T_{0}=C / c=6.7 \mathrm{\mu s}$, and $\omega_{0} \approx 0.942 \mathrm{MHz}$ (the revolution angular frequency). We'll make plots of $\frac{\mid \text { spectrum }(\Omega) \mid}{y_{0}}$ vs. Ω for various values for \bar{k}, l, and ω_{I}. We'll consider the characteristic frequencies $\omega_{I}=\sqrt{\frac{2 N r_{p} c^{2}}{l a^{2} A}}$ for $\mathrm{H}_{2}^{+}, \mathrm{CH}_{4}^{+}, \mathrm{N}_{2}^{+}$, and CO_{2}^{+}with $N=10^{11}$ electrons, $a=1 \mathrm{~mm}, r_{p}=1.54 \times 10^{-16} \mathrm{~cm}$, and $A=\frac{M}{m_{p}}\left(A_{H_{2}^{+}}=2, A_{C H_{4}^{+}}=16, A_{N_{2}^{+}}=28, A_{C O_{2}^{+}}=44\right)$. Below is a table of parameters/calculated values for each plot:

Plot	\bar{k}	$\omega_{I}(\mathrm{~Hz})$	$l(\mathrm{~m})$	$\bar{B}(\mathrm{~Hz})$
1	10^{1}	$1.18 \times 10^{8}\left(\mathrm{H}_{2}^{+}\right)$	1	3.91×10^{6}
2	10^{1}	$4.16 \times 10^{7}\left(\mathrm{CH}_{4}^{+}\right)$	1	2.32×10^{6}
3	10^{1}	$3.15 \times 10^{7}\left(\mathrm{~N}_{2}^{+}\right)$	1	2.02×10^{6}
4	10^{1}	$2.51 \times 10^{7}\left(\mathrm{CO}_{2}^{+}\right)$	1	1.81×10^{6}
5	10^{2}	$1.18 \times 10^{8}\left(\mathrm{H}_{2}^{+}\right)$	1	1.24×10^{7}
6	10^{4}	$1.18 \times 10^{8}\left(\mathrm{H}_{2}^{+}\right)$	1	1.24×10^{8}
7	10^{1}	$3.72 \times 10^{7}\left(\mathrm{H}_{2}^{+}\right)$	10	6.96×10^{5}
8	10^{1}	$1.18 \times 10^{7}\left(\mathrm{H}_{2}^{+}\right)$	100	1.24×10^{5}
9	10^{1}	$4.16 \times 10^{6}\left(\mathrm{CH}_{4}^{+}\right)$	100	7.36×10^{4}
10	10^{1}	$3.15 \times 10^{6}\left(\mathrm{~N}_{2}^{+}\right)$	100	6.40×10^{4}
11	10^{1}	$2.51 \times 10^{6}\left(\mathrm{CO}_{2}^{+}\right)$	100	5.71×10^{4}
12	10^{1}	All Four ω_{I}	100	$\mathrm{~N} / \mathrm{A}$

Table 1: Calculated values for \bar{B} for various \bar{k}

Figure 1: BPM Frequency Spectrum 1: H_{2}^{+}with $k=10$, and $l=1 \mathrm{~m}$

Figure 2: BPM Frequency Spectrum 2: CH_{4}^{+}with $k=10$ and $l=1 \mathrm{~m}$

Figure 3: BPM Frequency Spectrum 3: N_{2}^{+}with $k=10$ and $l=1 \mathrm{~m}$

Figure 4: BPM Frequency Spectrum 4: CO_{2}^{+}with $k=10$ and $l=1 \mathrm{~m}$

Figure 5: BPM Frequency Spectrum 5: H_{2}^{+}with $k=100$ and $l=1 \mathrm{~m}$

Figure 6: BPM Frequency Spectrum 6: H_{2}^{+}with $k=10000$ and $l=1 \mathrm{~m}$

Figure 7: BPM Frequency Spectrum 7: H_{2}^{+}with $k=10$ and $l=10 \mathrm{~m}$

Figure 8: BPM Frequency Spectrum 8: H_{2}^{+}with $k=10, l=100 \mathrm{~m}$

Figure 9: BPM Frequency Spectrum 9: CH_{4}^{+}with $k=10$ and $l=100 \mathrm{~m}$

Figure 10: BPM Frequency Spectrum 10: N_{2}^{+}with $k=10$ and $l=100 \mathrm{~m}$

Figure 11: BPM Frequency Spectrum 11: CO_{2}^{+}with $k=10$ and $l=100 \mathrm{~m}$

Figure 12: BPM Frequency Spectrum 12: $\mathrm{H}_{2}^{+}, \mathrm{CH}_{4}^{+}, \mathrm{N}_{2}^{+}$and CO_{2}^{+}with $k=10$ and $l=100 \mathrm{~m}$

